初中生数学一元二次方程复习训练题(共7篇)精选
推荐文章
小编给大家分享初中生数学一元二次方程复习训练题(共7篇)精选的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。 - 素材来源网络 编辑:李欢欢。
【导语】以下是小编收集整理的初中生数学一元二次方程复习训练题(共7篇),仅供参考,欢迎大家阅读。
篇1:初中生数学一元二次方程复习训练题
初中生数学一元二次方程复习训练题
接着上一章节方程与不等式的题目,接下来为大家带来的是初中数学复习题大全之一元二次方程,希望同学们认真审题了。
看过初中数学复习题大全之一元二次方程后,相信大家回答的时候都注意审题了吧。接下来有更多更全的初中数学复习题尽在,有兴趣的同学可以过来练练手了。
因式分解同步练习(解答题)
解答题
9.把下列各式分解因式:
①a2+10a+25 ②m2-12mn+36n2
③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2
10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.
答案:
9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2
通过上面对因式分解同步练习题目的.学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(填空题)
填空题
5.已知9x2-6xy+k是完全平方式,则k的值是________.
6.9a2+(________)+25b2=(3a-5b)2
7.-4x2+4xy+(_______)=-(_______).
8.已知a2+14a+49=25,则a的值是_________.
答案:
5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12
通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(选择题)
选择题
1.已知y2+my+16是完全平方式,则m的值是( )
A.8 B.4 C.±8 D.±4
2.下列多项式能用完全平方公式分解因式的是( )
A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1
3.下列各式属于正确分解因式的是( )
A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2
C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2
4.把x4-2x2y2+y4分解因式,结果是( )
A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2
答案:
1.C 2.D 3.B 4.D
以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。
篇2:一元二次方程复习测试题
一元二次方程复习测试题
1、复习一元二次方程,一元二次方程的解的概念;
2、复习4种方法解简单的一元二次方程;
3、会建立一元二次方程的模型解决简单的实际问题。
[学习过程]
一、回顾知识点
1、一元二次方程具有三个显著特点,它们是①_________________;②_________________;③_________________。
2、一元二次方程的一般形式是_______________________________。
3、一元二次方程的解法有____________、____________、____________、____________。
4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2-4ac。
①当△>0时,方程有__________;②当△=0时,方程有__________;③当△<0时,方程有__________。
5. 一元二次方程 的两根为 , ,则两根与方程系数之间有如下
关系: ,
二、巩固练习
(一)、填空题:
1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的`是_____。
2、已知x=1是一元二次方程x2-2mx+1=0的一个解,则m=______。
3、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。
4、关于x的一元二次方程x2-mx+m-2=0的根的情况是__________。
5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。
6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。
7、解方程5(x- )2=2(x- )最适当的方法是_____________。二、填空题:(每题3分,共24分)
8.一元二次方程 的二次项系数为 ,一次项系数为 ,常数项为 ;
9. 方程 的解为
10.已知关于x一元二次方程 有一个根为1,则
11.当代数式 的值等于7时,代数式 的值是 ;
12.关于 实数根(注:填“有”或“没有”)。
13.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两
位数为 ;
14.已知一元二次方程 的一个根为 ,则 .
15. 阅读材料:设一元二次方程 的两根为 , ,则两根与方程系数之间有如下
关系: , .根据该材料填空:已知 , 是方程 的两
实数根,则 的值为______ .
(二)、选择题:(每题3分,共30分)
1、关于x的方程 是一元二次方程,则( )
A、a>0 B、a≠0 C、a=0 D、a≥0
2.用配方法解下列方程,其中应在左右两边同时加上4的是( )
A、 B、 C、 D、
3.方程 的根是( )
A、 B、 C、 D、
4.下列方程中,关于x的一元二次方程的是( )
A、 B、 C、 D、
5.关于x的一元二次方程x2+kx-1=0的根的情况是( )
A、有两个不相等实数根 B、没有实数根
C、有两个相等的实数根 D、不能确定
6.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是( )
A、1 B、0 C、0或1 D、0或-1
7.为执行“两免一补”政策,某地区投入教育经费2500万元,预计投入3600万元.设这两年投入教育经费的年平均增长百分率为 ,则下列方程正确的是( )
A、 B、
C、 D、
8. 已知 、 是方程 的两个根,则代数式 的值( )
A、37 B、26 C、13 D、10
9.等腰三角形的底和腰是方程 的两个根,则这个三角形的周长是( )
A、8 B、10 C、8或10 D、不能确定
10.一元二次方程 化为一般形式为( )
A、 B、 C、 D、
(三)、解答题:(共46分)
19、解方程(每题4分,共16分)
(1) (2)
22、已知a、b、c均为实数,且 ,求方程的根。(8分)
23.在北京20xx年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每盈利
40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如
果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售吉祥物上盈利200元,那么每套应降价多少?(10分)
24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几,通过拆迁旧房,植草。栽
树,修公园等措施,使城区绿地面积不断增加(如图)(12分)
(1)根据图中所提供的信息,回答下列的问题:的绿地面积为______公顷,比20xx年增加了________
公顷。在20xx年,20xx年,20xx年这三年中,绿地面积增加最多的是___________年。
(2)为了满足城市发展的需要,计划到使城区绿地总面积达到72.6公顷,试求这两年(20xx~20xx年)绿地面积的年平均增长率.
篇3:初中数学一元二次方程复习教案
初中数学一元二次方程复习教案一
一、等式的概念和性质
1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式. 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.
2.等式的类型楷体五号
(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式 .
(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程 需要 才成立.
(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如 , .
注意:等式由代数式构成,但不是代数式.代数式没有等号.体五号
3.等式的性质五号
等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若 ,则 ;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若 ,则 , .
注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.
(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.
(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果 ,那么 .②等式具有传递性,即:如果 , ,那么 .黑体小四
二、方程的相关概念黑体小四
1.方程,含有未知数的等式叫作方程. 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号
2.方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号
3.方程的已知数和未知数楷体五号
已知数:一般是具体的数值,如 中( 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有 、 、 、 、 等表示.
未知数:是指要求的数,未知数通常用 、 、 等字母表示.如:关于 、 的方程 中, 、 、 是已知数, 、 是未知数.楷体五号
4.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号
5.解方程 求得方程的解的过程.
注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.
6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.黑体小四
三、一元一次方程的定义体小四
1.一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.楷体五号
2.一元一次方程的形式楷体五号
标准形式: (其中 , , 是已知数)的形式叫一元一次方程的标准形式.
最简形式:方程 ( , , 为已知数)叫一元一次方程的最简形式.
注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程 是一元一次方程.如果不变形,直接判断就出会现错误.
(2)方程 与方程 是不同的,方程 的解需要分类讨论完成.黑体小四
四、一元一次方程的解法
1.解一元一次方程的一般步骤五号
(1)去分母:在方程的两边都乘以各分母的最小公倍数. 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.
(2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.
(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.
(4)合并同类项:把方程化成 的形式. 注意:字母和其指数不变.
(5)系数化为1:在方程的两边都除以未知数的系数 ( ),得到方程的解 . 注意:不要把分子、分母搞颠倒.体五号
2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.
3.关于x的方程 ax b 解的情况 ⑴当a 0时,x ⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解
练习1、等式的概念和性质
1.下列说法不正确的是( )
A.等式两边都加上一个数或一个等式,所得结果仍是等式.
B.等式两边都乘以一个数,所得结果仍是等式. C.等式两边都除以一个数,所得结果仍是等式.
D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.
2.根据等式的性质填空.
(1) ,则 ; (2) ,则 ;
(3) ,则 ; (4) ,则 .
练习2、方程的相关概念
1.列各式中,哪些是等式?哪些是代数式,哪些是方程?
① ;② ;③ ;④ ;⑤ ;⑥ ;
⑦ ;⑧ ;⑨ .
2.判断题.
(1)所有的方程一定是等式. ( )
(2)所有的等式一定是方程. ( )
(3) 是方程. ( )
(4) 不是方程. ( )
(5) 不是等式,因为 与 不是相等关系. ( )
(6) 是等式,也是方程. ( )
(7)“某数的3倍与6的差”的含义是 ,它是一个代数式,而不是方程. ( )
练习3、一元一次方程的定义
1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:
(1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.
2.已知 是关于 的一元一次方程,求 的值.
3.已知方程 是关于x的一元一次方程,则m=_________
4.已知方程 是一元一次方程,则 ; .
练习4、一元一次方程的解与解法
1)一元一次方程的解 一)、根据方程解的具体数值来确定
1.若关于x的方程 的解是 ,则代数式 的值是_________。
2.若 是方程 的一个解,则 .
3.某同学在解方程 ,把 处的数字看错了,解得 ,该同学把 看成了 .
二)、根据方程解的个数情况来确定楷体五号
1.关于 的方程 ,分别求 , 为何值时,原方程:
(1)有唯一解;(2)有无数多解;(3)无解.
2.已知关于 的方程 有无数多个解,那么 , .
3.已知方程 有两个不同的解,试求 的值.
三)、根据方程定解的情况来确定楷体五号
1.若 , 为定值,关于 的一元一次方程 ,无论 为何值时,它的解总是 ,求 和 的值.
2.当 取符合 的任意数时,式子 的值都是一个定值,其中 ,求 , 的值.
五号
四)、根据方程整数解的情况来确定楷体五号
1.已知 为整数,关于 的方程 的解为正整数,求 的值.
2.已知关于 的方程 有整数解,那么满足条件的所有整数 =
3.若方程 有一个正整数解,则 取的最小正数是多少?并求出相应方程的解.
号
五)、根据方程公共解的情况来确定
1.若 和 是关于 的同解方程,则 的值是 .
2.已知关于 的方程 ,和方程 有相同的解,求这个相同的解.
3.已知关于 的方程 仅有正整数解,并且和关于 的方程 是同解方程.若 , ,求出这个方程可能的解.
2)一元一次方程的解法 一)、基本类型的一元一次方程的解法
1.解方程:(1) (2) - =1- (3)
二)、分式中含有小数的一元一次方程的解法楷体五号
1.解方程:(1) (2)
(3) (4)
三)、含有多层括号的一元一次方程的解法体五号
1.解方程:(1) (2) (3)
四)、一元一次方程的技巧解法
1.解方程:(1) (2)
(3) (4)
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.解方程 时,把分母化为整数,得( )。
A、 B、 C、 D、
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程:2(x-3)+3(2x-1)=5(x+3)
20.解方程:
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
初中数学解一元二次方程知识点
解法一:因式分解法
第一步:将已知方程化为一般形式,使方程右端为 0;
第二步:将左端的二次三项式分解为两个一次因式的积;
第三步:方程左边两个因式分别为 0,得到两个一次方程,它们的解就是原方程的解.
解法二:配方法
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0
即(x-2)^2=1
于是x=3或x=1
一般来说,一元二次方程往往可以用这样2种方法解答,特别是对配方来说,它可能更实用,普遍。
比如x^2+x-1=0
我们可能分解不出它的因式来,不过我们可以采用配方法
x^2+x-1=(x+1/2)^2-5/4=0
于是得到x=(根号5-1)/2或x=(-根号5-1)/2
小练习
1.分解因式:
(1)x2-4x=_________; (2)x-2-x(x-2)=________ (3)m2-9=________;
(4)(x+1)2-16=________
2.方程(2x+1)(x-5)=0的解是_________
3.方程2x(x-2)=3(x-2)的解是___________
4.方程(x-1)(x-2)=0的两根为x1·x2,且x1>x2,则x1-2x2的值等于_______
5.已知y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24. 6.方程x2+2ax-b2+a2=0的解为__________.
篇4:数学《一元二次方程》教案设计
教学目标
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1.教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
篇5:数学《一元二次方程》教案设计
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
篇6:数学《一元二次方程》教案设计
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程;
2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)
1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7
设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的长方形长为9acm,宽为7acm,依题意得
9a·7a=(可让上层学生在自学时,先上来板演)
2.P48-49第8、9题中下层学生在自学完之后先板演
效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
注意点:要善于利用图形的平移把问题简单化!
三、当堂训练:
1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?
(只要求设元、列方程)
2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?
篇7:数学《一元二次方程》教案设计
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点:一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的.次数是否是2。
4.一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.