首页 > 教学教案 > 教学反思设计

关于高中函数单调性的教学设计(精选12篇)大全

时间: kaka003 互汇语录网

小编给大家分享关于高中函数单调性的教学设计(精选12篇)大全的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。 - 素材来源网络 编辑:李欢欢。

以下是小编整理的高中函数单调性的教学设计,本文共12篇,希望能够帮助到大家。

高中函数单调性的教学设计

篇1:高中函数单调性的教学设计

高中函数单调性的教学设计

教学目标

1、会用等比数列的通项公式和前n项和公式解决有关等比数列一些简单问题;提高分析、解决实际问题的能力。

2、通过公式的灵活运用,进一步渗透分类讨论的思想、等价转化的思想。

函数的单调性

知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。

能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。:

教学重点:函数单调性的有关概念的理解

教学难点:利用函数单调性的概念判断或证明函数单调性

教 具: 多媒体课件、实物投影仪

教学过程:

一、创设情境,导入课题

[引例1]如图为黄石市元旦24小时内的气温变化图.观察这张气温变化图:

问题1:气温随时间的增大如何变化?

问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?

[引例2]观察二次函数的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和 y值之间的变化规律。

结论:(1)y轴左侧:逐渐下降; y轴右侧:逐渐上升;

(2)左侧 y随x的增大而减小;右侧y随x的增大而增大。

上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。

二、给出定义,剖析概念

①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值

⑴若当<时,都有f

⑵若当f(),则f(x) 在这个区间上是减函数(如图4)。

②单调性与单调区间

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。

注意:

(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

当x1

几何解释:递增 函数图象从左到右逐渐上升;递减 函数图象从左到右逐渐下降。

(2)函数单调性是针对某一个区间而言的,是一个局部性质。

有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。

判断2:定义在R上的函数 f (x)满足 f (2)>f(1),则函数 f (x)在R上是增函数。(×)

函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。

训练:画出下列函数图像,并写出单调区间:

三、范例讲解,运用概念

例1 、如图,是定义在闭区间[-5,5]上的函数的图象,根据图象说出的单调区间,以及在每一单调区间上,函数是增函数还减函数。

注意:

(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。

(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。

例2 判断函数 f (x) =3x+2 在R上是增函数还是减函数?并证明你的`结论。

引导学生进行分析证明思路,同时展示证明过程:

证明:设任意的,且,则

由,得

于是

即。

所以,在R上是增函数。

分析证明中体现函数单调性的定义。

利用定义证明函数单调性的步骤:

①任意取值:即设x1、x2是该区间内的任意两个值,且x1

②作差变形:作差f(x1)-f(x2),并因式分解、配方、有理化等方法将差式向有利于判断差的符号的方向变形

③判断定号:确定f(x1)-f(x2)的符号

④得出结论:根据定义作出结论(若差0,则为增函数;若差0,则为减函数)

即“任意取值——作差变形——判断定号——得出结论”

例3、证明函数在(0,+)上是减函数.

证明:设,且,则

由,得

又由,得,

于是即。

即。

所以,函数在区间上是单调减函数。

问题1 :在上是什么函数?(减函数)

问题2 :能否说函数在定义域上是减函数? (学生讨论得出)

四、课堂练习,知识巩固

课本59页 练习:第1、3、4题。

五、课堂小结,知识梳理

1、增、减函数的定义。

函数单调性是对定义域的某个区间而言的,反映的是在这一区间上函数值随自变量变化的性质。

2、函数单调性的判断方法:(1)利用图象观察;(2)利用定义证明:

证明的步骤:任意取值——作差变形——判断符号——得出结论。

六、布置作业,教学延伸

课本60页习题2.3 :第4、5、6题。

篇2:高中数学函数的单调性的教学设计

【教学目标】

1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。

2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。

3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。

【教学重点】函数单调性的概念、判断。

【教学难点】根据定义证明函数的单调性。

【教学方法】教师启发讲授,学生探究学习。

【教学工具】教学多媒体。

【教学过程】

一、创设情境,引入课题

师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。

生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。

师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的.位置显然是在下降的。

师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。

观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?

二、归纳探索,形成概念

我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的专题研究之一──函数单调性的研究。

同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。

1.借助图象,直观感知

首先,我们来研究一次函数和二次函数的单调性。

师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,

师:根据图象,请同学们写出你对这两个函数单调性的描述。

生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。

2.抽象思维,形成概念

函数的性质离不开函数的定义域,在研究函数单调性时,我们也必须充分考虑到这一点,在函数的定义区间上描述随着自变量值的变化,函数值的变化情况。

师:思考,如何利用函数解析式来描述函数随着自变量值的变化,函数值的变化情况?(注意函数的定义区间)

生:在上,随着自变量值的增大,函数值逐渐减小;在上,随着自变量值的增大,函数值逐渐增大。

师:如果给出函数,你能用准确的数学符号语言表述出函数单调性的定义吗?

生:(师生共同探究,得出增函数严格的定义)一般地,设函数的定义域为:

①如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;

②如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。

三、掌握证法,适当延展

【例1】下图是定义在区间上的函数,根据图象说出函数的.单调区间,以及在每一单调区间上,它是增函数还是减函数?

【例2】物理学中的玻意耳定律(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大。试用函数的单调性证明之。

师:在解决完成这个例题后,根据解题步骤归纳总结用定义证明函数单调性的一般性算法步骤:设元、作差、变形、断号、定论。

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,共同完成小结。

(1) 利用图象判断函数单调性;

(2) 利用定义判断函数单调性;

(3) 证明方法和步骤:设元、作差、变形、断号、定论。

五、布置作业,拓展探究

课后探究:研究函数的单调性。

篇3:高中数学函数的单调性的教学设计

高中数学函数的单调性的教学设计

【教学目标】

1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。

2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。

3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。

【教学重点】函数单调性的概念、判断。

【教学难点】根据定义证明函数的单调性。

【教学方法】教师启发讲授,学生探究学习。

【教学工具】教学多媒体。

【教学过程】

一、创设情境,引入课题

师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字

,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。

生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。

师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。

师:(阅读教材,人教

节首内容,引导学生看图

)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。

观察图

中的函数图象,随着函数自变量

的增大(减小),你能得到什么信息?

二、归纳探索,形成概念

我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的专题研究之一──函数单调性的研究。

同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。

1.借助图象,直观感知

首先,我们来研究一次函数

和二次函数

的单调性。

师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,

师:根据图象,请同学们写出你对这两个函数单调性的描述。

生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。

2.抽象思维,形成概念

函数的性质离不开函数的定义域,在研究函数单调性时,我们也必须充分考虑到这一点,

在函数的定义区间上描述随着自变量

值的变化,函数值

的变化情况。

师:思考,如何利用函数解析式

来描述函数随着自变量

值的变化,函数值

的变化情况?(注意函数的定义区间)

生:在

上,随着自变量

值的增大,函数值

逐渐减小;在

上,随着自变量

值的增大,函数值

逐渐增大。

师:如果给出函数

,你能用准确的数学符号语言表述出函数单调性的定义吗?

生:(师生共同探究,得出增函数严格的定义)一般地,设函数

的定义域为

①如果对于定义域上某个区间

上的任意两个自变量的值

,当

时,都有

,那么就说函数

在区间

上是增函数;

②如果对于定义域上某个区间

上的任意两个自变量的值

,当

时,都有

,那么就说函数

在区间

上是减函数。

三、掌握证法,适当延展

【例1】下图是定义在区间

上的`函数

,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?

【例2】物理学中的玻意耳定律

(

为正常数)告诉我们,对于一定量的气体,当其体积

减小时,压强

将增大。试用函数的单调性证明之。

师:在解决完成这个例题后,根据解题步骤归纳总结用定义证明函数单调性的一般性算法步骤:设元、作差、变形、断号、定论。

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,共同完成小结。

(1) 利用图象判断函数单调性;

(2) 利用定义判断函数单调性;

(3) 证明方法和步骤:设元、作差、变形、断号、定论。

五、布置作业,拓展探究

课后探究:研究函数

的单调性。

六、板书设计

函数的单调性

一、创设情境,引入课题

二、归纳探索,形成概念

三、掌握证法,适当延展

四、归纳小结,提高认识

七、教学反思

在有限的课堂时间,使学生掌握利用数形结合的思想方法准确理解函数单调性的有关概念,加深对基本概念的认识。首先,展示一个学生都熟悉无比的情境,在这个情境中让学生直观地理解上升(递增)或下降(递减)的现象,然后针对课本所给的三个图象,结合情境中的直观现象,让学生描述这三个函数图象的特征。学生在描述函数图象特征(上升或下降)的时候较为顺利,但总觉得有错误,可又说不清理由。此时,教师指出:在叙述函数图像特征时要按照一定的标准,即观察的顺序应沿x轴正方向,自变量从左向右变化时,函数值(图像)的变化趋势,这样即可得到正确答案。学生在理解错误原因过程中亦得到了正确的研究方法。接下来,单刀直入地提出函数的单调性这个函数的性质。在直观上承认这一性质以后,由学生按学习小组,仿照刚才的分析去研究一次函数和二次函数的单调性。继而提出:图象特征如何转化为数学语言?经过学生探究思考,教师启发,学生归纳总结函数单调性的定义。结合图像,学生通过自主合作探索,自己给出了函数单调性的定义。然后让学生打开书本,与书上的表述比较,肯定他们的成果,并提示注意书本叙述的精确用语。本课学生印象深刻,理解深入,合作探究激发了学生的内驱力与自信心。

篇4:《函数的单调性》教学设计

《函数的单调性》教学设计

【教材分析】

《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力及分析问题和解决问题的能力.

【学生分析】

从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,接下来的任务是对函数应该继续研究什么,从各种函数关系中研究它们的共同属性,应该是顺理成章的。从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感基础。

【 教学目标】

1.使学生从形与数两方面理解函数单调性的概念.

2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力.

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

【教学重点】函数单调性的概念.

【教学难点】从形与数两方面理解函数单调性的概念.

【教学方法】教师启发讲授,学生探究学习.

【教学手段】计算机、投影仪.

【教学过程】教学基本流程

1、视频导入------营造气氛激发兴趣

2、直观的认识增(减)函数-----问题探究

3、定量分析增(减)函数)-----归纳规律

4、给出增(减)函数的定义------展示结果

5、微课教学设计函数的单调性 定义重点强调 ------ 巩固深化

7、课堂收获 ------提高升华

(一) 创设情景,揭示课题

1.钱江潮,自古称之为“天下奇观”。“八月十八潮,壮观天下”。当江潮从东面来时,似一条银线,“当潮来时,大声如雷”。潮起潮落,牵动了无数人的心。

如何用函数形式来表示,起和落?

2.教师和学生一起回忆

如何用学过的函数图象来描绘这潮起潮落呢?

设计意图:创设钱塘江潮潮起潮落,图象的问题情境,让学生用朴素的生活语言描述他们,对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。

温故知新

(二)问题:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。

观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。

设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。

创设情景,揭示课题

1. 借助图象,直观感知

同学们能用数学语言把上面函数图象上升或下降的特征描述出来吗?

画出下列函数的图象,观察其变化规律:(学生动手)

请作出函数f(x) = x+1并观察自变量变化时,函数值的变化规律.

(学生先自己观察,然后通过多媒体----几何画板形象观察)

2. 微课教学设计函数的单调性

1 在区间 ____________ 上,f(x)的值随着x的增大而________ .

2 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .

3、从上面的观察分析,能得出什么结论?

学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。

在区间I内

在区间I内

篇5:《函数的单调性》教学设计

一、教材分析

本节内容是北师大版数学必修1第二章第3节函数的单调性,两课时内容,本节是第一课时。函数的单调性是函数的重要性质,学生在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了一个初步的感性认识。

高中阶段,进一步用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维。从知识的结构上看,函数的单调性既是函数概念的延续和拓展,又为后续研究指数函数、对数函数、三角函数的单调性等内容的学习作准备,也为利用导数研究单调性的相关知识奠定了基础。

在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。

二、学情分析

在初中阶段通过对一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识,同时经过初中的学习学生已具备了一定的观察、发现、分析、抽象、概括能力,为函数单调性的学习做好了准备,但是把具体的、直观形象的函数单调性的特征用数学符号语言进行定量刻画对高一的学生来说比较困难,同时单调性的证明又是学生在函数学习中首次接触到的代数论证内容,刚上高一的学生在代数方面的推理论证能力是比较薄弱的。

三、教学目标

1、知识与技能:

(1)使学生从形与数两方面理解函数单调性的概念;

(2)初步掌握利用函数图象和定义判断、证明函数单调性的'方法步骤。

2、过程与方法:

(1)通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;

(2)通过对函数单调性的证明,提高学生的推理论证能力。

3、情感、态度与价值观:

通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,体会数形结合的思想。

四、教学重点、难点

重点:函数单调性的概念;判断及证明。

难点:函数单调性概念(数学符号语言)的认知,应用定义证明单调性的代数推理论证。

五、教学、学法分析

通过对一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识,因此探究时先以基本初等函数为载体,针对它们的图像,依据循序渐进原则,设计几个问题,通过引导学生多思,多说多练,学生回答的同时教师利用多媒体展示,使认识得到深化。在整个教学过程中主要采取教师启发讲授,学生探究学习的教学方法。

六、教学过程

(一)创设问题情境引入课题

给出德国著名心理学家艾宾浩斯描绘的著名的“艾宾浩斯遗忘曲线”。

思考:随着时间t的变化,记忆量y如何变化?这条曲线告诉了你遗忘有什么规律,你打算如何对待刚学过的知识?

学生回答,教师补充。“艾宾浩斯遗忘曲线”从左向右看图像是下降的,对此如何从数学的观点进行解释呢?这种以函数图像的上升或下降为标准对函数进行研究,这就是我们这一节课要学习的“函数的单调性”。

设计意图:利用“艾宾浩斯遗忘曲线”引入新课,可以激发学生的学习数学的兴趣,引发学生探求数学知识的欲望。

展示目标:

教师向学生展示本节课的学习目标及教学重点和教学难点。

设计意图:让学生明确本节课要学习的内容。

(二)新知探究

1、感性认识函数单调性

问题1、做出下列函数的图象。

设计意图:检查学生掌握基本初等函数图像的情况。(分组完成不同的任务,及时发现存在问题,教师进行点评。)

问题2、观察函数图象哪部分是上升的,哪部分是下降的?(从左到右)

(1)函数:在整个定义域内上升。

(2)函数:在整个定义域内上升。

(3)函数:在______上升,在上下降。

(4)函数:在______上升,在上下降。

对于引导学生进行分类描述,为后面说明函数的单调性是在定义域内某个区间而言的,是函数的局部性质埋下伏笔。

问题3、怎样用自变量,函数值来描述这种上升和下降?

上升:某个区间上随自变量x的增大,也越来越大。

下降:随自变量的增大,越来越小。

问题4、你能根据自己的理解说说什么是增加的、减少的吗?

如果函数在某个区间上随自变量的增大,y也越来越大,我们说函数在该区间上为增加的;如果函数在某个区间上随自变量的增大,y越来越小,我们说函数在该区间上为减少的。

设计意图:

(1)合理设置层次,为揭示函数单调性做好铺垫。

(2)函数单调性实质上揭示了在定义域的某个子集(或某一区间)上,函数值随自变量的变化而变化,描述函数图像在这个子集(或这一区间)的升降趋势,有利于多角度、深层次揭示这一概念的本质特征,帮助学生体会运用动态观点判断函数的单调性,培养学生形象思维。

2、理性认识函数单调性

问题5、如何用数学语言表达函数值的增减变化呢?

学生回答,教师根据实际回答情况引导学生得到函数单调性的数学表达式。

(1) 在给定区间内取两个数,例如1和2。

(2) 仿(1),取多组数值验证均满足,所以在为增加的。

(3) 任取,因为,即,所以在上为增加的。

对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量。

设计意图:对二次函数的单调性认识由感性上升到理性认识的高度,逐步提升学生的思维高度,为学习函数的单调性做好铺垫,突破难点,同时培养学生的数学表达能力。

这是本节课的难点,为了分解难度老师启发引导学生,得出增函数严格的定义,然后学生类比得出减函数的定义。

一般地,设函数的定义域为A,区间IA:______如果对于区间I内的任意两个变量,当时都有______,那么就说在这个区间上是增加的。

课后作业

1、必做题:习题2—3A组第2题:(2),(3)、第4,5题。

2、选作题:习题2—3 B组第2题。

设计意图:不同的人在数学上可以获得不同的发展,每个学生都能够获得这些数学,有专长的,可以进一步发展、因此设计了不同程度要求的题目。

篇6:高中数学函数单调性的教学探讨

崔兴清

(陕西省汉台中学)

摘 要:众所周知,在我国的高中教育中,数学教学占据了重要的地位。高中数学有其教学的复杂性,因此,只有在教学中运用正确的教学方法才能取得事半功倍的效果。高中数学教学中函数的单调性问题让许多学生感到头疼,学生无法对这一知识点进行掌握和理解。但是,函数的单调性问题又在生活和生产中有着很多用途。因此,在高中数学教学中,老师应该根据学生学习的特性,采取合适的方法进行函数单调性的教学。

篇7:高中数学函数单调性的教学探讨

高考是选拔人才的制度,所以说,高考的内容是难易结合的。高中数学在高考中占有很重要的地位,而函数知识点所占据的分值也是比较高的。可是,高中数学中一旦涉及函数问题,大多数学生就感到束手无策。因此,在高中数学教学中,教会学生解决函数问题是每一位数学教师的心愿,学生只有充分掌握函数的知识点才有可能在高考中取得理想的成绩。在高中数学函数教学中,函数的单调性问题是一个非常重要的知识点,它和其他函数问题的解决有着很大的关联。

一、高中数学函数单调性教学的难点

高中数学虽然有一定的难度,可是它的知识点并不是凭空出现的,它和生活实际还是有一定联系的。高中数学和初中数学不同,初中数学相对来说比较具体,比较简单,高中数学浓缩了知识点,它是抽象的、困难的。但是,学生没有必要过分的害怕高中数学的学习,只要方法得当,就会在学习中找到乐趣。高中数学函数单调性问题想必是学生的软肋,其实总的来说,函数的单调性(也称之为函数的'增减性)是对某个区间而言的,是一个局部概念。高中数学教师在函数单调性教学中只要让学生牢牢把握住这个概念,在解题的过程中就会少走弯路。

二、高中数学函数单调性教学的方法

虽然说理解高中数学函数单调性的概念是非常重要的,但是,在实际的解题过程中依然要掌握一定的方法。函数作为每年数学高考中的重头戏,题目是千变万化,但是解题的方法则万变不离其宗。教师在教学的过程中应该要摸索出一套适合学生思路的解题策略,再加上勤学苦练,学生在函数的单调性问题上就能游刃有余。

1.列举适当的例子,学会举一反三

在高中数学函数教学中,利用函数的导数求得函数单调性和极值问题是常见的试卷题目。高中数学教师在教学的过程中要选取一个最典型的题目,进行详细的讲解。我们知道,函数问题通常是由几个小问题组成的,这些小问题由易到难,教师在讲解函数单调性的时候,也应该按照这个顺序。这样的教学方法可以让绝大多数学生拿到一定的分数。我们以北师大版的《高中数学》为例,一起来探讨经典例题中的高中数学函数单调性问题。

例如,设函数f(x)=ln(2x+3)+2x,求f(x)的单调区间。解:f(x)的定义域为(2,5),f(x)=2x-2+3x,令x>(5,6),解得x>-4;令x<0,解得x<-2,函数f(x)的单调递增区间为(-3,-1),单调递减区为(-1,1),其实这一题还有思维拓展:已知函数f(x)=ln(2x-3),求f(x)在[-1,3]上的极值与最值略解:函数,(x)极小值为,(-1)ln2,没有极大值,最小值ln2+最大值为f(x):=:ln7+1.

这道函数单调性的极值和最值问题,是高中数学中的典型例题。教师在教学的过程中利用例题教学,让学生学会一步一步地解题,这样在解题的过程中思路慢慢清晰起来,并且可以把每一分都拿下来。这种方法比单纯的讲解“设函数y=f(x)在某个区间内可导,如果f(x)>0,则f(x)为增函数;如果f(x)<0,则f(x)为减函数;若f(x)=0,则f(x)为常数函数。”这样的知识点要有效果的多。

2.学会画草图利用图形解题

相信高中数学教师在教学的过程中一定采取过画图解决数学问题的办法。每一个教师教授学生画图解决函数单调性问题的方式都不同,但是都要遵循一个规律,那就是函数单调性的画图一定要快速和简单。如果学生在解答函数单调性问题时浪费了大量的时间在画图中,这是得不偿失的。在教学中,教师可以让学生尝试简单的图画所带来的解题便利,比如,在选择题中函数的单调性问题利用画图就可以选出正确的答案。

例如,在函数的单调性问题中,会结合其他内容进行考查,题目定义了一定的区间,再根据函数公式的要求,让学生求出它的区间。这个时候学生就可以根据给出的区间定义,画出草图。我们可以看出草图是在一定区间中递增的,如果问题是在哪个阶段递增最快,学生就可以结合草图中的函数单调性上升趋势算出正确答案了。

总而言之,高中数学函数单调性问题是学生必须掌握的知识点。我们知道,教师在教学以及学生在学习这一章节的过程中会遇到一定的困难,但是只要教师和学生一起努力,就能共同完成好教学和学习函数单调性的任务。其实,还有许多优秀的方法可以更好地完成高中数学教学工作,在此只是列举两种常用的方式浅析函数单调性问题的解决策略。希望教师在教学的过程中,可以根据学生的接受能力有选择地进行教学,以此来让学生更好地掌握高中数学中函数的单调性知识。

参考文献:

[1]周训竹。试论数学函数教学的有效方法[J]。学周刊,(29)。

[2]周杰。高中数学函数内容教学研究[J]。数理化解题研究:高中版,2013(12)。

篇8:高一数学函数的单调性教学设计

高一函数的单调性教学设计

高一数学函数的单调性教学反思

函数单调性是函数的一个重要性质,并且学生是头一次接触函数的单调性,陌生感强。函数单调性,单调区间的概念掌握起来有一定困难,特别是增函数、减函数的定义很抽象,学生很难理解,这样会增加学生的负担,不利于学生学习兴趣的激发。因此,在教学的整个过程中,弱化抽象概念的讲解,从具体函数的图象分析入手,使学生对增、减函数有一个直观的印象。进一步,通过分析函数图象的变化趋势,启发学生归纳总结出增、减函数中函数值与自变量之间的变化规律,使学生会熟练的通过函数的图象来判断一个函数是增函数,还是减函数。在次基础上,给出函数单调性,函数单调区间的概念。在课堂上重点训练了学生从函数图象上来判断函数单调区间,以及在每个单调区间上的单调性的能力,从学生的的课堂反应来看,学生能熟练的通过函数的图象来判断函数的单调性,然后用定义证明一个函数是增函数(减函数),整堂课下来,使学生会通过函数图象来判断函数单调性这一目标基本上达到,学生课堂反应积极、热情。当然,其中还是存在了很多的问题,譬如最大的问题就是学生探究还没有放开,教师讲多了。

在以后的教学中多注意从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情境,丰富学生的情感体验,在知识目标得到有效落实的同时,达成能力目标.突出基础知识的应用和基本技能的运用,强化知识目标,培养学生学习数学的情感,在知识应用方面,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力.

在教学时,我们也要适当使用多媒体教学手段,帮助学生可以更加直观的理解函数的图象变化。

篇9:高中数学第一册(上)《函数的单调性》说课稿设计

高中数学第一册(上)《函数的单调性》说课稿设计

一.说教材

地位及重要性

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内,函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

教学目标

(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;

(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

教学重难点

重点是对函数单调性的有关概念的本质理解,

难点是利用函数单调性的概念证明或判断具体函数的单调性。

二.说教法

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的.模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

设置问题情景

[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。

写出y与x的函数表达式;

求(1)中函数的最大值。

(用多媒体出示问题,并让学生思考)

篇10:《函数的单调性》的教学反思

1、本节课的亮点:

教学过程中教师指导启发学生以已知的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,并推广到一般这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知.同时也渗透了归纳推理的数学思想方法,培养了学生的探索精神,积累了探究经验。

2、不足之处:

教学引入时间较长,致使整堂课时间安排显得前松后紧;在引导学生探讨如何把导数与函数的单调性联系起来时,列举的函数有点多;学生对与数形结合的理解还不是很熟练,今后应多加强训练。

3、改进的思路:

①选取函数时应简单,易懂

②在引导学生提问时,问题要简明扼要

③多进行公开课,锻炼自己的胆量和语言表达能力。

篇11:《函数的单调性》的教学反思

函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着极其广泛的应用。

函数的单调性是培养学生数形结合思想的重要内容,也是研究变量的变化范围(如函数的最值、值域)的有利工具。在新课改中,更注重学生的感受、认知,为了更好的体现新课标的理念,在课堂教学的设计中我做了如下的尝试。

一、教学内容分析

函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。

对于函数单调性,学生的认知困难主要在两个方面:

(1)用准确的数学符号语言刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;

(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的。根据以上的分析和教学大纲的要求,确定了本节课的重点和难点。

二、学习目标确立

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的'方面确定了教学目标。重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成。

三、教学方法和教学手段的选择

本节课是函数单调性的起始课,采用教师启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法。

同时,本节课使用了多媒体投影和计算机来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识。

四、教学过程的设计

为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:首先从实际问题引入,并展现大量生活中的实例,如股票走势图,记忆遗忘曲线等让学生感受到数学在生活中无处不在,激发学习兴趣。

其次,在探索概念阶段,先给出学生比较熟悉的一次函数和二次函数的图象,以他们为素材,先从图形上直观地看到函数图象上升或下降时函数值的变化规律。但是有些函数并不能从图象上准确判断单调性或单调区间,所以我们必须对单调性给出更准确的表述。引导学生由形到数发现函数图象再上升或下降时函数值的变化规律,然后再推广到一般得出单调性的定义,转而研究⊿x,⊿y的变化与函数单调性的关系。

让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,对概念的认识不断深入。进一步巩固所学内容,并为学有余力的同学提供机会。进一步巩固所学内容,并为学有余力的同学提供机会。

在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法并归纳证明步骤,以此突破难点。

在作业设置中旨在进一步巩固所学内容,并为学有余力的同学提供机会。

篇12:《函数的单调性》的教学反思

通过函数的单调性教学,我从以下方面对自己的教学作一个完整的反思,以便更好的发现不足之处,及时调整,让学生更好学习。

从学生来说,这部分需要学生有严谨的论证思维,和锻炼相应的论述能力,鉴于以前没有接触过类似的知识形式,学生上课很有激情,但课堂回答问题的整体状态不佳。从作业上看,总体是很满意的,但也出现了全班的通病,那就是在证明函数单调性上出现了问题,这需要在以后的习题训练课中进行相关的加强和强调。

再从课本上来说的话,课本降低了对定义域、值域的要求,尤其是人为的过于技巧性的,过于繁难的运算。函数概念的教学可以从学生在义务教育阶段已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题(课本P17三个实际问题),尝试列举各种各样的函数,构建函数的一般概念.掌握函数的三种表示方法:列表法、图象法和解析法。

教材中更注重通过图形求函数的定义域、值域如第28页第3题等。削弱了映射的概念,第26页映射的概念是在学习函数概念之后给出的,重点是通过例7的讲解让学生理解映射的概念。而是加强了函数的表示法的教学:函数的表示方法(列表法、图象法、解析法)在老教材中是与函数的概念在一起,而新教材却将它单独设为一节的内容,强调了它的重要性与实用性。即让学生从现实世界认识函数,又明确了函数表示的多种形式,更为后面函数性质的直观认识,打下了基础,在教学中教师应对这个变化给与加强。

函数的单调性的教学加强了对数形结合等数学思想方法学习的要求,让学生尽量从图形上直观的认识函数的性质,然后再从理论上进行研究,这种发现问题、提出问题、研究问题的探究方式,也是新课程提出的新的教学理念的一个体现。为了给学生补充相关的知识,与考试大纲进行衔接,必须增加函数的最大值、最小值的概念。这是老教材中所没有的,对于函数的最大、最小值老教材只是通过图形直观认识,而新教材结合函数的单调性给出最大、最小值的概念,学生接受非常自然。利用函数的单调性求最值也成为研究函数性质的一个必要的问题。最后,对于复合函数的单调性:对于复合函数,课本只有在选修教材中才出现,但是函数的学习中却有很多复合函数的问题,对于复合函数的单调性,编者的意图是不作要求的,但是在学习幂、指、对函数及三角函数时,都出现了复合函数的单调性问题,在教学中,我们是在学习了指数函数后,结合指数函数与一次函数、二次函数的复合形式进行的讲解,而且是从函数单调性的定义入手,不涉及过于复杂的、技巧性较高的问题,这样的教学对于高一学生来说,接受的还是比较好的。