首页 > 总结范文 > 工作总结

关于高中向量知识点总结(精选16篇)大全

时间: kaka003 互汇语录网

小编给大家分享关于高中向量知识点总结(精选16篇)大全的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。 - 素材来源网络 编辑:李欢欢。

下面是小编精心整理的高中向量知识点总结,本文共16篇,仅供参考,大家一起来看看吧。

高中向量知识点总结

篇1:平面向量的公式的高中数学知识点总结

定比分点

定比分点公式(向量P1P=λ向量PP2)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是 ab=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且?λa?=?λ??a?。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当?λ?>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的?λ?倍;

当?λ?0)或反方向(λ<0)上缩短为原来的?λ?倍。

数与向量的乘法满足下面的运算律

结合律:(λa)b=λ(ab)=(aλb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=abcos〈a,b〉;若a、b共线,则ab=+-?a??b?。

向量的数量积的坐标表示:ab=xx'+yy'。

向量的数量积的运算律

ab=ba(交换律);

(λa)b=λ(ab)(关于数乘法的结合律);

(a+b)c=ac+bc(分配律);

向量的数量积的性质

aa=a的平方。

a⊥b 〈=〉ab=0。

ab≤ab。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。

3、ab≠ab

4、由 a=b ,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:?a×b?=absin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

?a×b?是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、??a?-?b??≤?a+b?≤?a?+?b?;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号。

2、??a?-?b??≤?a-b?≤?a?+?b?。

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号。

这篇有关平面向量的公式的高中数学知识点总结,是小编精心为同学们准备的,祝大家学习愉快!

[平面向量的公式的高中数学知识点总结]

篇2:数学向量知识点总结

数学向量知识点总结

考点一:向量的概念、向量的基本定理

【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算

【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

考点三:定比分点

【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

考点四:向量与三角函数的综合问题

【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

考点五:平面向量与函数问题的交汇

【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

【命题规律】命题多以解答题为主,属中档题。

考点六:平面向量在平面几何中的应用

【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

【命题规律】命题多以解答题为主,属中等偏难的试题。

平面向量

戴氏航天学校老师总结加法与减法的代数运算:

(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律);

两个向量共线的充要条件:

(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .

(2) 若=,b=()则‖b .

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,,使得= e1+ e2

篇3:必修四向量知识点总结

向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的.夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。

向量的数量积的坐标表示:ab=xx'+yy'。

向量的数量积的运算律

ab=ba(交换律);

(λa)b=λ(ab)(关于数乘法的结合律);

(a+b)c=ac+bc(分配律);

向量的数量积的性质

aa=|a|的平方。

a⊥b 〈=〉ab=0。

|ab|≤|a||b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。

3、|ab|≠|a||b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

篇4:必修四向量知识点总结

向量公式:

1.单位向量:单位向量a0=向量a/|向量a|

2.P(x,y)那么向量OP=x向量i+y向量j

|向量OP|=根号(x平方+y平方)

3.P1(x1,y1)P2(x2,y2)

那么向量P1P2={x2-x1,y2-y1}

|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}

向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2

Cosα=向量a*向量b/|向量a|*|向量b|

(x1x2+y1y2)

=————————————————————

根号(x1平方+y1平方)*根号(x2平方+y2平方)

5.空间向量:同上推论

(提示:向量a={x,y,z})

6.充要条件:

如果向量a⊥向量b

那么向量a*向量b=0

如果向量a//向量b

那么向量a*向量b=±|向量a|*|向量b|

或者x1/x2=y1/y2

7.|向量a±向量b|平方

=|向量a|平方+|向量b|平方±2向量a*向量b

=(向量a±向量b)平方

数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)b=λ(ab)=(aλb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

篇5:高考平面向量知识点总结

高考平面向量知识点总结

1.基本概念:

向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2. 加法与减法的代数运算:

(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);

3.实数与向量的`积:实数 与向量 的积是一个向量。

(1)| |=| || |;

(2) 当 a>0时, 与a的方向相同;当a<0时, 与a的方向相反;当 a=0时,a=0.

两个向量共线的充要条件:

(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .

(2) 若 =( ),b=( )则 ‖b .

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.

4.P分有向线段 所成的比:

设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。

当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;

分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( -1), 中点坐标公式: .

5. 向量的数量积:

(1).向量的夹角:

已知两个非零向量 与b,作 = , =b,则AOB= ( )叫做向量 与b的夹角。

(2).两个向量的数量积:

已知两个非零向量 与b,它们的夹角为 ,则 b=| ||b|cos .

其中|b|cos 称为向量b在 方向上的投影.

(3).向量的数量积的性质:

若 =( ),b=( )则e = e=| |cos (e为单位向量);

b b=0 ( ,b为非零向量);| |= ;

cos = = .

(4) .向量的数量积的运算律:

b=b( )b= ( b)= ( b);( +b)c= c+bc.

6.主要思想与方法:

本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

篇6:高一数学平面向量知识点总结

向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度等于个单位的向量.

相等向量:长度相等且方向相同的向量

&向量的运算

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ >0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

<<<返回目录

高一数学知识点

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

<<<返回目录

高一数学学习方法

认真听课做笔记

在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。

把握教材去理解

要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习高一数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

提高思维敏捷力

如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

避免遗留问题

在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

<<<返回目录

篇7:高二数学平面向量知识点总结

高二数学平面向量知识点总结

平面向量是在二维平面内既有方向又有大小的量,物理学中叫也称作矢量,与之相对的是只有大小、没有方向的数量。高二数学平面向量知识点总结,我们来看看下文。

1.有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向.像这样,具有方向的线段叫做有向线段.记作:.

2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.

3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和方向.

(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.

4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.

5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.

6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定: //.

8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.

9.单位向量:长度等于1的向量叫做单位向量.

10.向量的加法运算:

(1)向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||.

13.数乘向量的定义:

实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.

向量的长度与方向规定为:(1)||=|

(2)当0时,与方向相同;当0时,与方向相反.

(3)当=0时,当=时,=.

14.数乘向量的运算律:(1))= (结合律)

(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

15.平行向量基本定理

如果向量,则//的充分必要条件是,存在唯一的实数,使得=.

如果与不共线,若m=n,则m=n=0.

16.非零向量的单位向量:非零向量的单位向量是指与同向的.单位向量,通常记作.

=||,即==(,)

17.线段中点的向量表达式

点M是线段AB的中点,O是平面内任意一点,则=(+).

18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).

20.两向量相等和平行的条件:若=(a1,a2),=(b1,b2) ,则

=a1=b1且a2=b2.

//a1b2-a2b1=0.特别地,如果b10,b20,则// =.

21.向量的长度公式:若=(a1,a2),则||=.

22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.

23.中点公式

若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= .

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则

x=,y=

25.(1)两个向量夹角的取值范围是[0,p],即0,p.

当=0时,与同向;当=p时,与反向

当= 时,与垂直,记作.

(3)向量的内积定义:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.

(4)内积的几何意义

与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积

当0,90时,0;=90时,

90时,0.

26.向量内积的运算律:

(1)交换率

(2)数乘结合律

(3)分配律

(4)不满足组合律

27.向量内积满足乘法公式

29.向量内积的应用:

篇8:数学必修四知识点总结平面向量

数学必修四知识点总结平面向量

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(_+_',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(_,y) b=(_',y') 则 a-b=(_-_',y-y').

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积

定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.

向量的数量积的坐标表示:a•b=_•_'+y•y'.

向量的数量积的运算律

a•b=b•a(交换律);

(λa)•b=λ(a•b)(关于数乘法的结合律);

(a+b)•c=a•c+b•c(分配律);

向量的数量积的性质

a•a=|a|的平方.

a⊥b 〈=〉a•b=0.

|a•b|≤|a|•|b|.

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.

2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.

3、|a•b|≠|a|•|b|

4、由 |a|=|b| ,推不出 a=b或a=-b.

5、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积.

a×a=0.

a‖b〈=〉a×b=0.

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的.

6、向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号.

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号.

7、定比分点

定比分点公式(向量P1P=λ•向量PP2)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.

若P1(_1,y1),P2(_2,y2),P(_,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

_=(_1+λ_2)/(1+λ),

y=(y1+λy2)/(1+λ).(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

8、三点共线定理

若OC=λOA+μOB,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA+GB+GC=O,则G为△ABC的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 _y'-_'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是a•b=0。

a⊥b的充要条件是__'+yy'=0。

零向量0垂直于任何向量.

数学二元一次方程组知识点

(一)定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。

(二)二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

(2)因式分解法

在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

(3)配方法

将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(4)韦达定理法

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

如何快速学好数学

适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

篇9:高中数学平面向量知识点和测试题

高中数学平面向量知识点归纳和测试题

必修四 第二章平面向量

1.在△ABC中,AB?c,AC?b.若点D满足BD?2DC,则AD?( ) A.

21b?c 33

B.c?

5

32b 3

C.

21b?c 33

D.b?

1

32c 3

2.在平行四边形ABCD中,AC为一条对角线,若AB?(2,4),AC?(1,3),则BD?( ) A. (-2,-4)

B.(-3,-5) C.(3,5)

D.(2,4)

3设D、E、F分别是△ABC的三边BC、CA、AB上的点,且DC?2BD,CE?2EA,AF?2FB,则

AD?BE?CF与BC( )

A.反向平行

.同向平行

C.互相垂直

D.既不平行也不垂直

4.关于平面向量a,b,c.有下列三个命题:

,k),b?(?2,6),a∥b,则k??3. ①若ab=ac,则b?c.②若a?(1

③非零向量a和b满足|a|?|b|?|a?b|,则a与a?b的夹角为60. 其中真命题的序号为 .(写出所有真命题的序号)

?的值为 5.若过两点P1(-1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段PP12所成的比

A -

1

3

B -

1 5

C

1 5

D

1 3

( )

D.2

( )

→→→

6.已知正方形ABCD的边长为1,AB=a,BC=b,AC=c,则a+b+c的模等于

A.0

B.22

2

7.已知|a|=5,|b|=3,且a・b=-12,则向量a在向量b上的投影等于

A.-4

B.4

12

C5

125

( )

8.若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于

13A.-+22

13-b 22

31C.a-b 22

31D.-a

22

( )

9.与向量a=(13)的夹角为30°的单位向量是

13

A.(,或(1,3)

22

B.(

31

) C.(0,1) 22

D.(0,1)或

3122( )

11

10.设向量a=(1,0),b=(),则下列结论中正确的是

22

A.|a|=|b|

B.a・b=

2

2

C.a-b与b垂直 D.a∥b

11.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物

体上一点,为使物体保持平衡,

现加上一个力f4,则f4等于 A.(-1,-2)

( ) D.(1,2)

B.(1,-2) C.(-1,2)

12.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a?c)?(b?c)?0,则c的最大值( )

A.1 B.2 C.2 D.

2

2

b?a・b= . 13.若向量a、b满足a?b?1,a与b的夹角为120°,则a・

14.如图,平面内有三个向量OA、、,其中OA与的夹角为120°,OA与的夹角为30°,且|OA|=||=1,||=2,若=λOA+μλ,μ∈R),则λ+μ的值为.

?aa?

c=a-bab?0a??b,则向量a与c的夹角为( ) 15.若向量与不共线,,且

ab??

A.0

B.

π

6

C.

π 3

D.

π 2

16.若函数y?f(x)的图象按向量a平移后,得到函数y?f(x?1)?2的图象,则向量a=( )

,?2) A.(?1,?2) B.(1,2) C.(?1,2) D.(1

3),a在b

上的投影为17.设a?(4,

,b在x轴上的投影为2,且|b|≤14,则b为( ) 2

C.??2?

14) A.(2,

B.?2,?

?

?2?? 7???2?7?

8) D.(2,

18.设两个向量a?(??2,?2?cos2?)和b??m?sin??,其中?,m,?为实数.若a?2b,则

?

?

m2

??

?

8] 的取值范围是( ) A.[-6,1] B.[4,

m

C.(-6,1] D.[-1,6]

19.直角坐标系xOy中,i,j分别是与x,y轴正方向同向的单位向量.在直角三角形ABC中,若

????

AB?2i?j,AC?3i?kj,则k的可能值个数是

A.1 B.2 C.3

D.4

→→

20.向量BA=(4,-3),向量BC=(2,-4),则△ABC的形状为

A.等腰非直角三角形 C.直角非等腰三角形

B.等边三角形

( )

D.等腰直角三角形

( )

21.若a=(λ,2),b=(-3,5),且a与b的夹角是钝角,则λ的`取值范围是

10

,+∞? A.??3?

10

? B.??3?

10

-∞, C.?3?

10

-∞, D.?3?

22.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.

23.已知向量a和向量b的夹角为30°,|a|=2,|b|=,则向量a和向量b的数量积a・b=________. 24.已知非零向量a,b,若|a|=|b|=1,且a⊥b,又知(2a+3b)⊥(ka-4b),则实数k的值为________. 25.已知a=(1,2),b=(-2,3),且ka+b与a-kb垂直,则k=( ) (A) ?1?2(B)

?

?

?

?

?

?

2?1(C) 2?3(D) 3?2

课堂小测

1.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点

F.若AC?a,BD?b,则AF?( )

A.

11a?b 42

B.

21

a?b 33

C.

11

a?b 24

D.a?

1

32b 3

2.已知O,A,B是平面上的三个点,直线AB上有一点C,满足2AC?CB?0,则OC?( ) A.2OA?OB

B.?OA?2OB

C.

21

OA?OB 33

D.?OA?

1

32

OB 3

?xπ??π?

?2?平移,则平移后所得图象的解析式为() 3.将y?2cos???的图象按向量a????36??4??xπ??xπ?

A.y?2cos????2 B.y?2cos????2

?34??34??xπ?

C.y?2cos????2

?312?

?xπ?

D.y?2cos????2

?312?

CD?4.在△ABC中,已知D是AB边上一点,若AD?2DB,

A.

1

CA??CB,则??( ) 3

2 3

B.

1 3

C.?

1 3

D.?

2 3

5.若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)・c=30,则x等于

A.6

( )

B.5 C.4 D.3

6.已知a,b,c在同一平面内,且a=(1,2).

(1)若|c|=25,且c∥a,求c; (2)若|b|=

7.已知|a|=2,|b|=3,a与b的夹角为60°,c=5a+3b,d=3a+kb,当实数k为何值时:

(1)c∥d;(2)c⊥d.

8.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1).

(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长; →→→

(2)设实数t满足(AB-tOC)・OC=0,求t的值.

,且(a+2b)⊥(2a-b),求a与b的夹角. 2

→→→→→→→→→

9.已知向量OP1、OP2、OP3满足条件OP1+OP2+OP3=0,|OP1|=|OP2|=|OP3|=1.

求证:△P1P2P3是正三角形.

10.已知正方形ABCD,E、F分别是CD、AD的中点,BE、CF交于点P.求证:

(1)BE⊥CF;(2)AP=AB.

1

解7 由题意得a・b=|a||b|cos 60°=2×3×=3.

2

9

(1)当c∥d,c=λd,则5a+3b=λ(3a+kb). ∴3λ=5,且kλ=3,∴k5

29

(2)当c⊥d时,c・d=0,则(5a+3b)・(3a+kb)=0. ∴15a2+3kb2+(9+5k)a・b=0,∴k=-.

14→→→→→→

解8 (1)AB=(3,5),AC=(-1,1),求两条对角线的长即求|AB+AC|与|AB-AC|的大小. →→→→→→→→

由AB+AC=(2,6),得|AB+AC|=210, 由AB-AC=(4,4),得|AB-AC|=42. →→→→→→→(2)OC=(-2,-1), ∵(AB-tOC)・OC=AB・OC-tOC2, 11→→→→→→易求AB・OC=-11,OC2=5, ∴由(AB-tOC)・OC=0得t=-.

5

→→→→→→→→→

证明9 ∵OP1+OP2+OP3=0,∴OP1+OP2=-OP3,∴(OP1+OP2)2=(-OP3)2,

→→

1OP・OP1→2→2→→→2→→

∴|OP1|+|OP2|+2OP1・OP2=|OP3|, ∴OP1・OP2=-,cos∠P1OP2=,

22→→

|OP1|・|OP2|→→→

∴∠P1OP2=120°.∴|P1P2|=|OP2-OP1|=

→→

?OP2-OP1?2=

→→→→OP12+OP22-2OP1・OP2=3.

→→

同理可得|P2P3|=|P3P1|=故△P1P2P3是等边三角形.

证明10 如图建立直角坐标系xOy,其中A为原点,不妨设AB=2, 则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1). →→→

(1)BE=OE-OB=(1,2)-(2,0)=(-1,2), →→→

CF=OF-OC=(0,1)-(2,2)=(-2,-1), →→∵BE・CF=-1×(-2)+2×(-1)=0, →→

∴BE⊥CF,即BE⊥CF.

→→

(2)设P(x,y),则FP=(x,y-1),CF=(-2,-1),

→→→→

∵FP∥CF,∴-x=-2(y-1),即x=2y-2.同理由BP∥BE,得y=-2x+4,代入x=2y-2. 686868→→→→

. ∴AP2=??2+??2=4=AB2,∴|AP|=|AB|,即AP=AB. 解得x=,∴y=,即P??55?5??5?55

篇10:高中圆知识点总结

高中圆知识点总结

集合:

圆:圆可以看作是到定点的距离等于定长的点的集合;

圆的外部:可以看作是到定点的距离大于定长的点的集合;

圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹:

1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;

2、到线段两端点距离相等的点的轨迹是:线段的中垂线;

3、到角两边距离相等的点的轨迹是:角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

圆周角定理推论:

圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。

②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。

③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。)

④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。

⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

⑥在同圆或等圆中,圆周角相等弧相等弦相等。

圆周运动

1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

2、描述匀速圆周运动快慢的'物理量

(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

**匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。

(2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的

(3)周期T,频率f=1/T

(4)线速度、角速度及周期之间的关系: 3、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。

4、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,

5,注意的结论:

(1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。

(3)做匀速圆周运动的物体受到的合外力就是向心力。

6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。

篇11:高中有机化学知识点总结

高中有机化学知识点总结

1.有机化合物的组成与结构:

⑴能根据有机化合物的元素含量、相对分子质量确定有机化合物的分子式。

⑵了解常见有机化合物的结构。了解有机物分子中的官能团,能正确地表示它们的结构。

⑶了解确定有机化合物结构的化学方法和某些物理方法。

⑷了解有机化合物存在异构现象、能判断简单有机化合物的同分异构体(不包括手性异构体)

⑸能根据有机化合物命名规则命名简单的有机化合物。

⑹能列举事实说明有机分子中基团之间存在相互影响。

2.烃及其衍生物的性质与应用

⑴以烷、烯、炔和芳香烃的代表物为例,比较它们在组成、结构、性质上的差异。

⑵了解天然气、石油液化气和汽油的主要成分及其应用。

⑶举例说明烃类物质在有机合成和有机化工中的重要作用。

⑷了解卤代烃、醇、酚、醛、羧酸、酯的典型代表物的级成和结构特点以及它们的相互联系。

⑸了解加成反应、取代反应和消去反应。

⑹结合实际了解某些有机化合物对健康可能产生影响,关注有机化合物的安全使用问题。

3.糖类、氨基酸和蛋白质

⑴了解糖类的组成和性质特点,能举例说明糖类在食品加工和生物质能源开发上的应用。

⑵了解氨基酸的组成、结构特点和主要化学性质,氨基酸与人体健康的关系。

⑶了解蛋白质的组成、结构和性质。

⑷了解化学科学在生命科学发展中所起的重要作用。

4.合成高分子化合物

⑴了解合成高分子的组成与结构特点,能依据简单合成高分子的结构分析其链节和单体。

⑵了解加聚反应和缩聚反应的特点。

⑶了解新型高分子材料的性能及其在高新技术领域中的应用。

⑷了解合成高分子化合物在发展经济、提高生活质量方面的贡献。

依据反应条件:

⑴能与NaOH反应的有:①卤代烃水解;②酯水解;③卤代烃醇溶液消去;④酸;⑤酚;⑥乙酸钠与NaOH制甲烷

⑵浓H2SO4条件:①醇消去;②醇成醚;③苯硝化;④酯化反应

⑶稀H2SO4条件:①酯水解;②糖类水解;③蛋白质水解

⑷Ni,加热:适用于所有加氢的加成反应

⑸Fe:苯环的卤代

⑹光照:烷烃光卤代

⑺醇、卤代烃消去的结构条件:β-C上有氢

⑻醇氧化的结构条件:α-C上有氢

依据反应现象

⑴水或溴的CCl4溶液褪色:C═C或C≡C;

⑵FeCl3溶液显紫色:酚;

⑶石蕊试液显红色:羧酸;

⑷Na反应产生H2:含羟基化合物(醇、酚或羧酸);

⑸Na2CO3或NaHCO3溶液反应产生CO2:羧酸;

⑹Na2CO3溶液反应但无CO2气体放出:酚;

⑺NaOH溶液反应:酚、羧酸、酯或卤代烃;

⑻生银镜反应或与新制的Cu(OH)2悬浊液共热产生红色沉淀:醛;

⑼常温下能溶解Cu(OH)2:羧酸;

⑽能氧化成羧酸的醇:含“─CH2OH”的结构(能氧化的醇,羟基相“连”的碳原子上含有氢原子;能发生消去反应的醇,羟基相“邻”的碳原子上含有氢原子);

⑾水解:酯、卤代烃、二糖和多糖、酰胺和蛋白质;

⑿既能氧化成羧酸又能还原成醇:醛;

篇12:高中导数知识点总结

高中导数知识点总结

导数的定义:

当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

一般地,我们得出用函数的导数来判断函数的增减性(单调性)的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值

求导数的步骤:

求函数y=f(x)在x0处导数的步骤:

① 求函数的增量Δy=f(x0+Δx)—f(x0)

② 求平均变化率

③ 取极限,得导数。

导数公式:

① C'=0(C为常数函数);

② (x^n)'= nx^(n—1) (n∈Q*);熟记1/X的导数

③ (sinx)' = cosx; (cosx)' = — sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 —(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=—cotxcscx (arcsinx)'=1/(1—x^2)^1/2 (arccosx)'=—1/(1—x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=—1/(1+x^2) (arcsecx)'=1/(|x|(x^2—1)^1/2) (arccscx)'=—1/(|x|(x^2—1)^1/2)

④ (sinhx)'=hcoshx (coshx)'=—hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=—1/(sinhx)^2=—(cschx)^2 (sechx)'=—tanhxsechx (cschx)'=—cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2—1)^1/2 (artanhx)'=1/(x^2—1) (|x|1) (arsechx)'=1/(x(1—x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)

⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(—1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(—1) (1/x)'=—x^(—2)

导数的应用:

1.函数的单调性

(1)利用导数的符号判断函数的增减性 利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。 一般地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)0是f(x)在此区间上为增函数的`充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0。也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。

(2)求函数单调区间的步骤(不要按图索骥 缘木求鱼 这样创新何言?1。定义最基础求法2。复合函数单调性) ①确定f(x)的定义域; ②求导数; ③由(或)解出相应的x的范围。当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数。

2.函数的极值

(1)函数的极值的判定

①如果在两侧符号相同,则不是f(x)的极值点;

②如果在附近的左右侧符号不同,那么,是极大值或极小值。

3.求函数极值的步骤

①确定函数的定义域; ②求导数; ③在定义域内求出所有的驻点与导数不存在的点,即求方程及的所有实根; ④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。

4.函数的最值

(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念。

(2)求f(x)在[a,b]上的最大值与最小值的步骤 ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

5.生活中的优化问题

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题。解决这些问题具有非常现实的意义。这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题。

篇13:高中氓知识点总结

(一)现实主义的创作方法

《氓》诗是诗人现实生活典型情绪的再现,诗人不自觉地运用了现实主义的创作方法,歌唱抒述自己悲惨的遭遇,起了反映、批判当时社会现实的作用。人们在流传中,把自己关于恋爱婚姻方面的感受,渗透到歌唱中去,故作品富于现实性。诗中女主人公所叙述的是自己的切身经历,自己的感受,都是真情实感。而这种真情实感在阶级社会中是带有普遍性、典型性的。诗人善于把握题材的各种复杂的矛盾。她抓住自己和氓的矛盾,氓是夫权的代理人,他们从夫妻关系而变为压迫与被压迫的关系,透露了男尊女卑、夫权制度的社会现实。

(二)比兴艺术手法

诗人是农村妇女,农村四周的自然景物,是她每天所接触的熟悉的,诗人触物联想,便歌唱起来。第三章的“桑之未落,其叶沃若,”是起兴,比喻年青貌美的少女初婚的幸福。第四章的“桑之落矣,其黄而陨,”也是起兴,比喻弃妇面容憔悴与被弃的痛苦。第三章的“吁嗟鸠兮,无食桑葚”,是对喻,喻下两句,“吁嗟女兮,无与士耽”。第六章的“淇则有岸,湿则有泮,”是反比,比氓的变心是无边无际不可捉摸的。这些,对于塑造形象,突出主题,加强诗的思想意义,都起了积极作用。

(三)对比的表现手法

这是由于现实矛盾在人们头脑中的反映。其形式有二:1.句法对比者,如“女也不爽,士贰其行”。“士之耽也,犹可说也;女子耽也,不可说也。”这是士和女两种不同人物的对比。“桑之未落”与“桑之落兮”的对比,“不见复关”与“既见复关”的对比,都是互相映衬,收到更好地塑造形象、抒发感情的效果。2.前后对比者,如氓在未婚前是“言笑晏晏,信誓旦旦”,在婚后则“言既遂矣,至于暴矣。”前后不同态度互相映衬,描绘出氓虚伪的本质。

(四)借代修辞

诗是形象思维,不是抽象的说教,要用具体的事物,抒写抽象的意境。形象的语言,容易引起读者想象、共鸣,增强诗的魅力。《氓》诗人用氓住的'地方“复关”代表氓,用“总角”代表幼年。以送行之远、乘垣望关表多情。以车来贿迁表同居,以“淇水汤汤,渐车帷裳”表大归。以“三岁”表多年,以“二三”表反复。这和《采薇》诗人用“杨柳依依”代春,“雨雪霜霏”代冬,性质是一样的。收到语言隽永,耐人寻味的效果。

(五)顶真修辞

陈望道《修辞学发凡》说:“顶真是用前一句的结尾来做后一句的起头,使邻接的句子头尾蝉联,而有上递下接趣味的一种修辞法。”这种修辞,多见于歌曲。这可能由于集体歌唱,口耳相传,此唱彼和,互相衔接,便于记诵所产生的一种句式。如“抱布贸丝,匪来贸丝”,“以望复关,不见复关”,“无与士耽,士之耽兮”,“及尔偕老,老使我怨”,“不思其反,反是不思”等,都是《氓》诗中的顶真句。蝉联词不一定都在句首,有的在句中,它们的作用是一样的,都是加强诗的音乐性。

(六)叹辞的应用

诗人抒发猛烈的感情或深沉的思想的时候,经常用一种呼声或感叹辞来表达。如当她追叙婚前恋爱生活的时候,感情比较稳定,没有使用叹辞。第三章转入抒情,感情激昂,连用两个“于嗟”(哎呀),三个“兮”(啊)字,两个“也”(呀)字。第四章对“桑落”有所感,用了一个“矣”字。第五章诉说被丈夫虐待,被兄弟讥笑,情绪最激动,连用六个“矣”字,借表她沉痛的心情和口气。最后一章对氓表示愤慨和决绝,加强了语气,拖长了音调,坚决地唱出“亦已焉哉”(也就算了吧)!焉哉二字连用,就象歌剧幕终,使人有余音袅袅,不绝如缕之感。

(七)呼告的表现手法

由于诗人感情的强烈,对所爱者或所憎者,虽不在面前,但觉得如在面前,向他陈诉或斥责,这就是呼告的特征。它在抒情诗中用得最普遍。《氓》诗第三章诗人叙述她的被弃,心情愤激,把个人的命运和当时一般女子的命运联系起来,仿佛有一群青年女子在她面前,她把自己的痛苦告诉她们,在恋爱过程中,要警惕男子将来会变心,自己将难摆脱祸害:“于嗟女兮,无与士耽!士之耽兮,犹可说也;女之耽兮,不可说也!”这几句呼告,唱出了对男女不平等社会现象的强烈悲愤。第六章又转为呼告的形式,“及尔偕老,老使我怨”,这时好象氓站在面前,斥责他的誓言是个欺骗。接着以少时两情融洽,言笑宴宴,信誓旦旦的情景,反衬氓今日的负心。悲愤之情,又达到了高潮。最后又高呼“不思其反,反是不思,亦已焉哉!”如果这里不用呼告手法向氓发出斥责,是不足以解恨的。

这首诗音调铿锵自然,富有真情实感。诗中用了不少“蚩蚩”、“涟涟”、“汤汤”、“晏晏”、“旦旦”等叠字形容词,它们不但起了摹声绘貌的作用,且加强了诗的音乐性。《诗经》民歌的章法,多半是叠章复唱的。由于《氓》诗人感情复杂,叙事曲折,故分章而不复唱,这在《国风》民歌中是少见的。

(八)古今异义

至于,古义:到;今义:达到某种高度

以为,古义:把......当作;今义:认为

泣涕,古义:眼泪;今义:眼泪和鼻涕

贿,古义:财物;今义:用财物贿赂

篇14:高中有机物知识点总结

高中有机物知识点总结

狭义上的有机化合物主要是由碳元素、氢元素组成,以下是“高中有机物知识点总结”希望能够帮助的到您!

蛋白质

蛋白质的基本组成单位是氨基酸,生物体中组成蛋白质的氨基酸大约有20种,在结构上都符合结构通式。氨基酸分子间以肽键的方式互相结合。由两个氨基酸分子缩合而成的化合物称为二肽,由多个氨基酸分子缩合而成的化合物称为多肽,其通常呈链状结构,称为肽链。一个蛋白质分子可能含有一条或几条肽链,通过盘曲﹑折叠形成复杂(特定)的空间结构。蛋白质分子结构具有多样性的特点,其原因是:构成蛋白质的氨基酸种类不同、数目成百上千、氨基酸排列顺序千变万化、多肽链形成的空间结构千差万别。由于结构的多样性,蛋白质在功能上也具有多样性的特点,其功能主要如下:(1)结构蛋白,如肌肉、载体蛋白、血红蛋白;(2)信息传递,如胰岛素(3)免疫功能,如抗体;(4)大多数酶是蛋白质如胃蛋白酶(5)细胞识别,如细胞膜上的糖蛋白。总而言之,一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者。

脱水缩合:一个氨基酸分子的氨基(-NH2)与另一个氨基酸分子的羧基(-COOH)相连接,同时失去一分子水。

有关计算:

① 肽键数 = 脱去水分子数 = 氨基酸数目 - 肽链数

② 至少含有的羧基(-COOH)或氨基数(-NH2) = 肽链数

核酸

核酸是遗传信息的载体,是一切生物的遗传物质,对于生物体的遗传和变异、蛋白质的生物合成有极其重要作用。核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类,基本组成单位是核苷酸,由一分子含氮碱基﹑一分子五碳糖和一分子磷酸组成。组成核酸的碱基有5种,五碳糖有2种,核苷酸有8种。

脱氧核糖核酸简称DNA,主要存在于细胞核中,细胞质中的线粒体和叶绿体也是它的载体。

核糖核酸简称RNA,主要存在于细胞质中。对于有细胞结构(同时含DNA和RNA)的生物,其遗传物质就是DNA;没有细胞结构的病毒,有的遗传物质是DNA如:噬菌体等;有的遗传物质是RNA如:烟草花叶病毒、HIV等

细胞中的糖类和脂质

糖类分子都是由C、H、O三种元素组成。糖类是细胞的主要能源物质。

糖类可分为单糖、二糖和多糖等几类。单糖是不能再水解的`糖, 常见的有葡萄糖、果糖、半乳糖、核糖、脱氧核糖,其中葡萄糖 是细胞的重要能源物质,核糖和脱氧核糖一般不作为能源物质,它们是核酸的组成成分;二糖中蔗糖和麦芽糖是植物糖,乳糖、糖原是动物糖;多糖中糖原 是动物糖 ,淀粉和纤维素是植物糖 ,糖原和淀粉是细胞中重要的储能物质。

脂质主要是由C H O 3种化学元素组成,有些还含有P (如磷脂) 。脂质包括脂肪、磷脂、和固醇、。脂肪是生物体内的储能物质。 除此以外,脂肪还有保温、缓冲、减压的作用;磷脂是构成包括细胞膜在内的膜物质重要成分;固醇类物质主要包括胆固醇、性激素、维生素D等,这些物质对于生物体维持正常的生命活动,起着重要的调节作用。

多糖、蛋白质、核酸等都是生物大分子,组成它们的基本单位分别是单糖(葡萄糖)﹑氨基酸和核苷酸,这些基本单位称为单体,这些生物大分子就称为单体的多聚体,每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体 。

细胞内有机物质的鉴定

糖类中的还原糖(葡萄糖、果糖)能与斐林试剂发生作用,生成砖红色沉淀;

脂肪可以被苏丹Ⅳ染成橘黄色;蛋白质与双缩脲试剂发生作用,产生紫色反应。在还原糖的检测中,斐林试剂甲液和乙液应等量混合均匀后再使用,并且要水裕加热;在蛋白质的检测中,在组织样液中应先加入双缩脲试剂A液1ml,再加入双缩脲试剂B液4滴,不需加热。

甲基绿能使DNA呈现绿色,吡罗红能使RNA呈现红色,因此利用这两种染色剂将细胞染色,可以显示DNA和RNA在细胞中的分布。在此实验中,盐酸的作用是改变膜的通透性,加速色素进入细胞。用人的口腔上皮细胞做实验材料,此实验的步骤是制片、水解、冲洗涂片、染色、观察。

有机化合物知识点的分享已经结束,希望考生可以认真仔细的复习,发挥出自己的潜力。

篇15:磁场知识点总结高中

磁场知识点总结高中

磁场

磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。电流和电流之间的相互作用也是通过磁场产生的。

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

磁现象的电本质

1罗兰实验

正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。

2安培分子电流假说

法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3磁现象的电本质

运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

磁场的方向

规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

磁感线

1.磁感线的概念:

在磁场中画出一系列有方向的`曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。

2.磁感线的特点:

(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。

(2)磁感线是闭合曲线。

(3)磁感线不相交。

(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。

3.几种典型磁场的磁感线:

(1)条形磁铁。

(2)通电直导线。

①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;

②其磁感线是内密外疏的同心圆。

(3)环形电流磁场:

①安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。

②所有磁感线都通过内部,内密外疏。

(4)通电螺线管:

①安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;

②通电螺线管的磁场相当于条形磁铁的磁场。

磁感应强度

1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度l的乘积Il的比值叫做通电导线处的磁感应强度。

2.定义式:B=F/IL

3.单位:特斯拉(T),1T=1N/A.m

4.磁感应强度是矢量,其方向就是对应处磁场方向。

5.物理意义:磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电流强度的大小、导线的长短等因素无关。

6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2面积上的磁感线条数跟那里的磁感应强度一致。

7.匀强磁场:

(1)磁感应强度的大小和方向处处相等的磁场叫匀强磁场。

(2)匀强磁场的磁感线是均匀且平行的一组直线。

磁通量

1.定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量。

2.定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)

3.单位:韦伯(Wb)

4.物理意义:表示穿过磁场中某个面的磁感线条数。

5.B=φ/S,所以磁感应强度也叫磁通密度。

安培力

1.定义:磁场对电流的作用力叫安培力。

2.安培力大小:安培力的大小等于电流I、导线长度L、磁感应强度B以及I和B间的夹角的正弦sinθ的乘积,即F=BIlsinθ。

注意:公式只适用于匀强磁场。

3.安培力的方向:安培力的方向可利用左手定则判断。

篇16:高中导数知识点总结

函数与导数

第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。

第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)

第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。

>>>返回目录

高中数学的学习方法

首先,不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。

第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。

第三,要注意数学思想和方法的总结。比如说画图的思想,转化的思想等等。这个操作起来还是比较容易的。就是在你每次做完题要注意看解析,看他是怎么分析试题的;老师讲课的时候是怎么讲解和归类的;甚至可以多问一下身边的同学是怎么做这道题的,来寻求一题多解,多思路,看有没有比你的方法更好的方法。良好的方法是成功的一半,掌握了正确的方法不仅省时更省力。

第四,计算能力的提高。讲真,我是没有这个毛病的。但是我身边的好多同学有这个问题,就是明明会做的题一定会算错。小题大题一张卷下来能扣出来10分。嘴上说着是粗心,但我认为不是。我觉得有两个原因,一个是知识掌握的不牢固,另一个是自身计算能力太差。这两点都是很致命的。计算能力的提高,会让正确率上升,会做的题会一次性做对。同时,也会节省出很多时间,去做其他的题。所以从一轮复习开始就要学会提升自己的计算能力,这样到最后才不会后悔

>>>返回目录

如何提升高中数学成绩

1.数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,比较自己的解题思路与教师所讲有哪些不同。先把基础吃透了,公式的推导过程是万变的根基,首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

2.要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,这是必要的,中学的题开型就那么些类型,一定要熟练掌握各种类型,主攻错题。

3.应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

高中数学与初中数学最大的区别是概念多并且较抽象,学起来和以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。

4.数学的学习一点都不比熟悉电脑游戏难,但也不必像小学生那样搞“题海战术”,以“题海战术”这种方法只会使数学越学越糟。做过多的题会让人失去耐心,当做到真正重要的题目的时候反而容易混淆。当我们所学的概念在题目中出现时,那些与重要概念直接相关的题目就是重要的题目。

5.数学能力差,主要表现在对基本技能的理解、掌握和应用上.只有在巩固基础知识和掌握基本技能的前提下,才能进行综合能力的强化。因此,学习数学一定要在基础上下功夫,在数学的学习上不少学生会犯一个错误,因为大多老师和各种数学方法上都说要大量做题,其实它有个前提条件,做题是在三律吃透的前提下才有作用。

6.多从举一反三上下功夫,上课能听懂,作业能完成,就是成绩提不高.这是高中生共同的“心声...由于课堂信息容量小,知识单一,在老师的指导下,学生一般都能听懂,课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,还有受速度和时间等方面的影响,不大注重课后的理解掌握和能力提高,只想着多做题。因此,学习中要多分析基础类、综合类、方法类、变条件、变结论、变思想、变方法,并对其中具有代表性的问题进行详尽的剖析,做到触类旁通,这有利于提高高中生的学习数学成绩。

>>>返回目录