关于五年级《组合图形的面积》教学设计(共16篇)大全
推荐文章
小编给大家分享关于五年级《组合图形的面积》教学设计(共16篇)大全的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。 - 素材来源网络 编辑:李欢欢。
下面是小编为大家收集的五年级《组合图形的面积》教学设计,本文共16篇,仅供参考,欢迎大家阅读,希望可以帮助到有需要的朋友。
篇1:五年级《组合图形的面积》教学设计
教学内容:
北师大版教科书第九册第75~76页的内容
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
重点、难点
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:如何选择有效的计算方法解决问题。
教具准备:
多媒体课件和组合图形图片。
教学过程:
一。引出概念,揭示主题。
1. 你能看出以下图形是由那些基本图形组成的吗?
2. 像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)
3. 画一画,分一分。
二。新授。
这是我家的客厅平面图!(课件出示客厅的平面图。)
1、估计地板的面积
师:请同学们先估一估这个地板的面积有多大呢?
2、探索不同方法。
师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的`想法用虚线在图中表示出来。
生动手画图。
教师有选择的展示方法。
3.师总结分割法和添补法。
其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。
4.计算:
现在你会计算这个组合图形的面积吗?
要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。
生独立计算。
5.汇报计算方法及结果。
6.辨析及总结。
(1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?
分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。
(2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三。巩固练习。
1.根据条件算一算引入中两个图形的面积。
2.动手做。根据你的方法测量你需要的数据进行计算。
四。小结:
谈谈你的收获!
五。板书:
篇2:五年级上《组合图形面积》教学设计
【教学内容】
北师大版五年级上册数学教科书第75页。
【设计理念】
主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。
【教材分析】
学生在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。在此基础上学习组合图形,学习此部分知识,一方面可以巩固已学的基本图形,另一方面将所学的知识进行综合运用,提高学生综合解决问题的能力。在学生探索问题,解决问题的过程中渗透数学转化的思想,在学生灵活运用多种方法解决问题的过程中培养学生优化的意识,从而培养学生思维的灵活性。
【学情分析】
五年级的学生正在经历自主高效的实验,学生无论从自学能力,还是课堂的积极探索都有了喜人的变化,学生学习方式的变化更加促使老师要以学定教,学生在学习的过程中可能会有这样或那样的问题,特别是本节课要探究多种方法解决问题,虽然学生已经在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。但对于组合图形面积的计算学生可能在解决此问题的策略——即数学的转化的思想上没有充分地认识,另外学生在理解用多种方法解决问题时没有优化方法的意识,需要教师的引导与点拨,但我相信学生在老师的引导下会完成本节课的任务。
【学习目标】
1.在自主探索的活动中,理解计算组合图形面积的多种方法。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确地解答。
3.能运用所学的知识,解决生活中组合图形的实际问题。
【教学重点】掌握求组合图形的面积的几种方法。
【教学难点】选择有效的方法解决实际问题。
【教学准备】多媒体课件
【教学过程】
课前谈话:
老师很高兴能和大家一起来上这节课。我相信:我们五x班全班同学都能把最精彩的一面展示出来。你们喜欢数学吗?想不想把数学学得verygood非常棒!老师告诉你学好数学的小诀窍:认真听,用心想,积极说。能不能做到这三点?让我们带着自信走进课堂!
【设计意图】简单的几句话,拉近了学生与老师的距离,关注学生的情感体验,同时渗透良好的学习习惯的培养。九个字书写在黑板上以提示学生。
一、课题导入。
1.老师今天给大家带来了一些漂亮的图片,来欣赏一下。
(多媒体出示小鱼图、火箭、房屋平面设计图、中队队旗等生活中的组合图形。)
一起说说你看到了什么?小鱼图是由两个三角形组成的……引导学生说出每幅图是怎样组成的。你们还记得它们的面积公式吗?
2.教师小结:上面的每个图形都是由我们学过的图形组成的,像这样由几个简单的图形组成的图形叫组合图形。这节课,我们就来研究组合图形的面积。(板书课题)
【设计意图】:课开始,充分发挥多媒体的优势,呈现学生熟悉的、生活中的组合图形,给学生视觉上的刺激。唤醒学生的已有认知,激发学生的求知欲。
二、展示目标,师生共同解读目标。(关键词:理解方法,解决问题)板书关键词。
【设计意图】:使学生明确本节课所学内容,确立所要达成的目标。
三、自主探究,获取新知
1.联系生活,提出问题。
(1)小华家新买了住房,计划在客厅铺地板。请你估计他家至少买多少平方米地板,再实际算一算。(出示课件)客厅平面图。
【设计意图】:在实际问题情境中激发学生探索问题的兴趣,从而产生自主学习的动机。
2.自主探究,解决问题。
教师课件出示导学提纲:阅读教材第75页,思考下列问题。
(1)我们已经学过哪些图形的面积?怎样求它们的面积?
(2)请你估一估小华家至少买多少平米的地板?试说出你的理由?
(3)计算地板面积,你还有哪些办法?尝试用画图的方法说明~
(4)你能举例说一说计算组合图形面积的方法吗?
3.学生先自学然后组内交流。
(教师预设):
A.学生可能转化的图形有:
B.学生可能会运用多种方法求出客厅的面积,但是不清楚解决此问题的策略——即转化的数学思想。
4.教师深入到小组与学生共同研究问题,了解学生的自学情况。
5.学生在学习单的正面尝试解答,老师巡视,让学生把不同的转化方法展示到黑板上。
四、展示汇报:
1.各组按展示到黑板上的转化方法做汇报,学生讲解自己的思路。
【设计意图】计算组合图形的面积最重要的一步是运用转化思想把图形分割或添补成几个基本图形。把转化的过程和计算的过程分解开来进行,有效地突破了难点,在学生在转化的过程中思维真正的动起来。上黑板贴出学生的探究结果,让学生讲解自己的思考过程,也许学生表达的不完整,但毕竟是学生自己思考的结果,所以应该给予肯定,以激发学生的学习积极性,渗透一题多解的方法,培养学生思维的灵活性。
2.计算面积。
学生分组用一种方法计算图形的面积,最后全班订正。(在学习单背面完成)
教师预设点拨:观察上面的几种方法,你认为哪些方法更简单一些?你是怎样想的?
教师预设点拨:
推导平行四边形和三角形的面积公式,计算异分母分数相加减时我们都用到转化思想。今天我们学习组合图形的面积时又运用了转化的策略,看来数学的转化的'思想很重要。
【设计意图】在经历了分割图形或添补图形的思考过程,并对几种方法进行比较优化以后,再动手计算,给学生提供了再一次选择解决方法的机会,比较出几种方法的特点,培养学生的质疑能力,提高学生的思维灵活性。
五、达标检测:
1.(基本题)下面的各个图形可以转化成哪些已学过的图形?(教材76页练一练第一题)
学生自己先思考如何把这个图片转化成已经学过的图形,是分还是补?分怎么分?补如何补?
2.(必做题)试试:你知道这个图形的面积吗?
(每小格长度是1厘米)
【设计意图】让学生在认真观察的基础上,用割补的方法把图形转化成一个长方形,对转化的思想有更深刻的认识。
3.如图,一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?
4.(必做题)如图,有一面墙,粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?(教材76页练一练第二题)
六、拓展延伸
1.下图是由两个正方形组成,求阴影部分的面积。(单位:米)
2.用组合图形面积的计算方法,可以解决生活中的很多问题……如中队队旗,有兴趣的同学课下可以量一量、算一算中队队旗的面积。
七、学教反思
1.学习本课你有哪些收获?
2.你觉得这节课你表现怎么样?给自己评价一下!
篇3:五年级上册《组合图形面积》教学设计
◆教材分析
《组合图形的面积》是义务教育标准实验教材小学数学五年级上册第六单元的内容。这部分内容是在学生已经掌握了各种图形的面积计算的基础上进行教学的。
◆教学目标
1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积;
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积;
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
◆教学重难点
【教学重点】应用知识解决生活中有关组合图形面积的问题。
【教学难点】怎样分割或者补足图形。
◆课前准备
xxx课件。
一、情景引入
1、复习
第一个图形是什么形?它的面积怎样计算?学生口答。
教师在长方形图的下面板书:S=ab。
第二个图形呢?
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。
可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的'内容,板书:组合图形面积的计算。
2、认识组合图形
让学生指出有哪些图形?
师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(99页的四幅图),认一认,它们是什么?
这些图片分别是由哪几个平面图形组成的?
这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?
师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?
同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。
二、探索新知
1、在实际生活中,有些图形也是由几个简单的图形组合而成的(出示题目及图)。
图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
◆教学过程
2、如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?
3、暴露资源,组织研讨:
方法一:三角形+正方形三角形面积=5×2÷2=5(m2)
正方形面积=5×5=25(cm2)房子侧面面积=25+5=30(cm2)
方法二:两个梯形
梯形面积=(5+2+5)×(5÷2)÷2=12×2.5÷2=30÷2=15(m2)房子侧面面积=15×2=30(cm2)
方法三:拼成一个长方形
长方形面积=(5+2+5)×(5÷2)=12×2.5=30(m2)房子侧面面积=长方形面积
方法四:从长方形中挖走两个小三角形
篇4:五年级数学组合图形的面积教学设计
五年级数学组合图形的面积教学设计
教学目标:
1、认识组合图形,会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。
教学重点:
探索并掌握组合图形的面积计算方法。
教学难点:
理解并掌握组合图形的组合及分解方法。
教具准备:
多媒体课件
学具准备:
各种有色卡纸、胶水、剪刀等。
教学过程:
一、复习铺垫:
同学们,老师想知道你们已经学会了计算哪些平面图形的面积?
二、创设情境,激趣导入。
根据已知条件进行分解
师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)
师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:
(课件展示)
我们学过这些图形吗?
请同学们认真观察,这些图形有什么共同的特征?
左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?
像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?
三、自主学习,探究新知。
1、组合图形的分解:
师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。
(1)电脑出示书第92页的四幅主题图。
师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?
(2)小组讨论。
(3)让学生举例说说生活中的组合图形。
同学们,开动脑筋想想:生活中哪些地方还有组合图形?
2、自主解决例题。
师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?
⑴出示例题4
⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)
⑶生汇报。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)
⑷生看书质疑。
师:下面老师再考考你们是不是真的明白。
3、出示做一做。问:这块地是由哪些简单图形组成的?
⑴生独立计算。
⑵生展示思路。
四、应用新知,解决问题:
师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的`问题。(题目略)
师:通过刚才的练习,你认为该怎样求组合图形的面积?
生自由发言。
师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。(板书:相加或相减)
2.求中队旗的面积。
师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的知识来帮帮老师呢?动手算一算。请小组内分工合作。
(1)出示讨论提纲:
你们组能想出几种算法?有没有更简便的方法?
看哪一小组分工合作的最好?速度最快?
(2)小组分工合作。
(3)展示学生的各种算法。
师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。
(板书:根据已知条件进行分解)
五、新知的拓展:组拼组合图形
谢谢你们,老师终于知道了需要买多少布了。请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽。同学们赶快动手吧。
1、学生合作组拼。
2、展示评价学生的作品。
3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。
六、总结:
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?
附:板书设计
组合图形的面积
根据已知条件进行分解
相加或相减
篇5:五年级上册组合图形的面积教学设计
教学内容:《义务教育课程标准实验教科书 数学 五年级上册》第92~94页。
教学目标:
1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。
2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
3.培养学生的认真观察、独立思考的能力。
教具准备:课件、图片等。
教学过程:
一、展示汇报 建立概念
师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)
生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
……
师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?
(设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。)
师:老师也搜集了一些生活中物品的图片,( 课件出示:房子、队旗、风筝、空心方砖、指示牌、火箭模型)这些物品的表面,都有哪些图形?谁来选一个说说。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。……
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?
生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
……
师小结:组合图形是由几个简单的图形组合而成的。
说一说,生活中有哪些地方的表面有组合图形? (学生自由回答)
师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?
生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。
……
这节课我们重点学习组合图形的面积。
(设计意图:唤起学生学习数学的好奇心和积极的探究态度,鼓励学生自己提出问题,使学生认知活动中的智力因素和非智力因素都处于最佳状态,形成强烈的求知欲。)
二、自主探索 计算方法
(课件出示)下图表示的是一间房子侧面墙的形状。
认真观察这个组合图形,怎样计算出面积呢?
大家在图上先分一分,再算一算。
然后,在小组里互相说说自己的想法。
(学生活动,教师进行巡视指导)
指名汇报:
生:把组合图形分成一个三角形和一个正方形。(教师用课件演示:三角形和正方形分别闪动。)先分别算出三角形和正方形的面积,再相加。
教师边听边列式板演:5×5+5×2÷2
=25+5
=30(平方米)
师:还有不同的算法吗?
生:把这个组合图形分成两个完全一样的梯形。(教师用课件演示:两个完全一样的梯形闪动)先算出一个梯形的面积,再乘2就可以了。
学生说算式教师进行板演:(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(平方米)
师:你认为那种方法比较简便呢?
学生说自己的想法。
师:在计算组合图形的面积时有多种算法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。
(设计意图:在学生解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、培养了能力。这时,为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法,实现方法的最优化。通过学生的试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。)
师:通过学习,你认为怎样计算组合图形的面积
学生回答。
师小结:在计算面积时,先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。
在计算面积时,还要注意些什么?(学生根据自己的想法回答)
三、反馈练习及时巩固
1.(课件出示:队旗)要做一面这样的队旗,需要多少布呢?认真观察图,选择有用的数据,你想怎样计算?把你的算法在小组里交流。
指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。
2.(课件出示:空心方砖)它的实际占地面积是多少?自己独立思考并计算,说说自己的想法。
3.(课件出示:火箭模型的平面图)选择有用的数据,独立完成,师生共同订正。
4.同学们刚才计算的是老师搜集的组合图形的面积,你们想不想算一算自己搜集的组合图形的面积呢?选择一个简单的图形,量出有用的数据,算一算组合图形在纸上的面积。先指名汇报,再互相检查算得对不对。
5.出示题目: ( 单位:厘米 )计算下面图形的面积。你有不同的算法吗?
(设计意图:这组习题形式多样、难易适度,既巩固了本课所学的知识,又培养了学生的学习能力。体现了数学来源于生活,有应用于生活的教育理念。)
四、课后小结:这节课你学会了什么?有什么收获?
评析:
本节课是在学生学习了基本平面图形面积的基础上进行教学的。教师在教学过程中,体现以学生为主体、教师为主导的教学理念。以充分发挥学生作用为主线,以培养学生能力为宗旨展开教学,具体体现以下三点:
一、借助经验,理解概念。
通过课前收集生活中组合图形的图片,使学生初步感知生活中许多实物的表面都是有几个简单图形组成的。借助主题图的演示,从具体的实物抽象出几何图形,使学生进一步加深对组合图形概念的理解,密切了数学知识与现实的联系。借助学生的介绍,抽象出什么样的图形是组合图形。这样通过一系列的直观感知,使学生对概念的理解充分。
二、尝试应用,掌握方法。
以计算小房子侧面面积为例,引导学生观察图形,分一分、算一算。通过试做汇报交流、比较观察。体现了重视学生的思维过程,将思维过程充分暴露出来;体现了算法多样性,为学生提供充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高学生解决问题的能力。
三、综合应用,培养能力。
在应用阶段,教师精心设计了不同层次的几个问题,提高了学生的学习能力。通过计算队旗的面积,体现算法多样性,进而选择简便的解决办法;通过计算空心方砖的实际占地面积、火箭模型的平面面积,进行独立计算、选择合适数据,提高学生的解题能力。借助计算较复杂的组合图形的面积,运用不同算法,发展学生的空间观念。
本环节体现了应用形式多样,层次清晰,紧密联系现实,难以适度。激发了学生学习兴趣,培养了学生学习能力。
篇6:组合图形的面积教学设计
教学目标:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:
理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:
根据组合图形的.条件,有效地选择汁算组合图形面积的方法。
教学方法:
动手实践、自主探索、合作交流。
教学准备:
多媒体、
师:准备各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程:
一、情境导入
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)
二、互动新授
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。
学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。
风筝的面是由四个小三角形组成的。
2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
学生可能想到研究它的周长,也可能想到研究它的面积。
适时点拨:它们的周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。
4.出示教材第99页例4:一间房子侧面墙的形状图。
引导学生观察图并思考:怎样计算出这个组合图形的面积?
组织学生小组合作学习,说一说是怎样分的,然后再算一算。
集体汇报,学生可能会想到两种方法:
(1)把组合图形分成一个三角形和一个正方形,先分别算出
三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5X2÷2
=25+5
=30(m2)
(2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(m2)
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、巩固拓展
1.完成教材第101页“练习二十二”第1题。
先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
2.完成教材第101页“练习二十二”第2题。
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
3.完成教材第101页“练习二十二”第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
板书设计:
篇7:组合图形的面积教学设计
由两个或两个以上的简单图形组成的大的不规则图形
叫组合图形。
5×5+5×2÷2(5+5+2)×(5÷2)÷2×2
=25+5=12×2.5÷2×2
=30(m2)=30(m2)
篇8:组合图形的面积教学设计
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
教学重点:探索组合图形面积的计算方法。
教学难点:理解并能有效地选择计算方法并进行正确的解答。
学生分析:本节课是在学生已经掌握长方形、正方形、平行四边等基本图形面积计算方法的基础上进行的。在进行本节课的学习之前,学生运用转化思想进行过平行四边形、三角形、梯形面积计算方法的探索。在教材第二单元“比较图形面积”一节中学生已初步感受到割补方法在图形面积计算中的应用。
教学过程:
一、复习
课件出示一些图形:三角形、正方形、平行四边形、梯形。
教师:这些图形都是我们学过的图形,能说一说怎样计算它们的面积吗?然后,请学生根据图中的数据进行计算。
过渡:这些图形都是我们学过的能直接利用公式进行面积计算的基本图形,这样的图形面积你会算吗?
二、探索解决组合图形面积计算的问题。
1、课件出示计算客厅面积的问题,并让学生说说这个图形的特点。
2、让学生先估算客厅这个组合图形的大概面积。
3、小组探索,合作寻求计算方法。
请大家独立思考并交流算法,然后小组合作、分工完成。(教师巡视,及时了解学生典型的算法。)
4、汇报、交流算法。
选择几种较有代表性的算法,让学生上台把图片贴在黑板上,并写出计算过程。并为学生的各种想法标出序号。
结合学生的发言,引出并板书:分割法添补法
以上几种方法,哪种比较简单?
5、客厅地面面积与我们以前所学过的图形的面积计算有什么区别呢?揭示课题:组合图形的面积。
三、练习
1、下面各个图形由哪些基本图形组成的?(课后练一练第1题)
2、一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?(课后试一试)
3、实际应用。(课后练一练第2题)
四、课堂小结:
1、你在生活中见到过哪些组合图形的应用呢?
2、今天学习了组合图形的面积,你认真在计算其面积时,要如何做或注意些什么?
篇9:组合图形的面积教学设计
教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。
教学目标:
1、认识组合图形,会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。
教学重点:探索并掌握组合图形的面积计算方法。
教学难点:理解并掌握组合图形的组合及分解方法。
教具准备:多媒体课件
学具准备:各种有色卡纸、胶水、剪刀等。
教学过程:
一、复习铺垫:
同学们,老师想知道你们已经学会了计算哪些平面图形的面积?
二、创设情境,激趣导入。
根据已知条件进行分解
师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)
师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:
(课件展示)
我们学过这些图形吗?
请同学们认真观察,这些图形有什么共同的特征?
左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?
像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?
三、自主学习,探究新知。
1、组合图形的分解:
师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。
(1)电脑出示书第92页的四幅主题图。
师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?
(2)小组讨论。
(3)让学生举例说说生活中的组合图形。
同学们,开动脑筋想想:生活中哪些地方还有组合图形?
2、自主解决例题。
师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?
⑴出示例题4
⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)
⑶生汇报。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)
⑷生看书质疑。
师:下面老师再考考你们是不是真的明白。
3、出示做一做。问:这块地是由哪些简单图形组成的?
⑴生独立计算。
⑵生展示思路。
四、应用新知,解决问题:
师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。(题目略)
师:通过刚才的练习,你认为该怎样求组合图形的面积?
生自由发言。
师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。(板书:相加或相减)
2.求中队旗的面积。
师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的知识来帮帮老师呢?动手算一算。请小组内分工合作。
(1)出示讨论提纲:
你们组能想出几种算法?有没有更简便的方法?
看哪一小组分工合作的最好?速度最快?
(2)小组分工合作。
(3)展示学生的各种算法。
师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。
(板书:根据已知条件进行分解)
五、新知的拓展:组拼组合图形
谢谢你们,老师终于知道了需要买多少布了。请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽。同学们赶快动手吧。
1、学生合作组拼。
2、展示评价学生的作品。
3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。
六、总结:
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?
篇10:组合图形的面积教学设计
教学目标:
1、在自主探索的活动中,归纳计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法进行解答,并能解决生活中相关的实际问题。
3、培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。
教学重点:掌握组合图形面积的计算方法。
教学难点:理解计算组合图形面积的多种方法。
教学关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
教学准备:电脑课件、正方形、长方形等图形。
教学过程:
一、复习导入。
1.复习。
(1)回答。
谁能说说我们已经认识了哪些平面图形?怎样计算它们的面积?
指名回答后,教师用字母公式表示长方形、正方形、三角形、平行四边形、梯形的面积公式。
(2)如图所示,计算下面图形的面积。
课件出示图形。
学生独立计算后,教师组织学生进行全班核对;全班核对时,教师让学生说说计算上面这些图形的面积时要注意什么。
2.引入。
师:请同学们拿出课前准备的纸片,请用这些图形拼一个复杂的图形并说一说像什么。
学生拿出课前准备的图形,进行拼图的操作活动。学生拼出后,教师抽选部分学生展示自己拼出的图形。
学生回答。
师:同学们说的真好,那么请你们看看黑板上所拼的各种图形,它们有没有共同的特点呢?
指名回答,通过交流,引导学生认识:虽然拼出的图形的形状不同但都是由几个简单图形拼出来的。
教师指出:像这样由几个简单图形拼出来的图形,我们把它们叫做组合图形。
师:你能算出自己拼出的组合图形的面积吗?(生回答:先把每个图形的面积算出来,再相加就行了。)
师:这节课,我们就来学习组合图形面积的计算。
板书课题:组合图形的面积。
二、探索新知。(电脑课件出示)(单位:米)
1.出示例题。
小华家新买了住房,计划在客厅铺地板(客厅平面图如下)。请你估计他家至少要买多大面积的地板,再实际算一算,并与同学进行交流。
2.自主探索算法。
先让学生估计小华家至少要买多大面积的地板(指名回答),接着教师提出“怎样算出准确的得数”这个问题。
接着让学生在独立思考的基础上再小组内交流算法。老师巡视,及时了解学生典型的算法。
师:请同学们小组合作,帮小华计算出这个图形的面积,看那些组的方法又多又巧。(学生合作讨论计算,教师巡视。)
3.全班交流算法。
师:哪个组能给大家介绍你们的方法,并说说为什么这样做?
(学生展示分割方法和计算过程,陈述思考的过程,教师用电脑课件演示并板书。)
师:大家采用的方法有什么共同的特点呀?
师:为什么要进行分割?
师:大家采用的就是人们计算组合图形面积常用的`一类方法,叫作分割法。(板书:分割法)
师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢?
学生回答。
师:这样能计算组合图形的面积吗?
学生回答。
师:我们班的同学真是太棒了!这就是计算组合图形面积的另一类方法,叫作添补法。(板书:添补法)。
师:我们可以利用分割法和添补法计算组合图形的面积。简称割补法。()(板书:割补法)。
三、巩固练习
1.如图,一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?
(1)先指导学生理解题意,让学生明确“这张纸板还剩下多大的面积?”指的是哪些部分的面积。
(2)再让学生独立计算,在此基础上教师组织学生交流算法。
2.如图,有一面墙粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?
(1)先指导学生理解题意,让学生明确解题的关键是:应先算这面墙的面积(即:应先算出题中组合图形的面积),再根据乘法的意义算出一共要用多少千克涂料。
(2)让学生独立解决问题,并与同桌交流算法,再此基础上教师组织学生进行全班交流。
3.学校要油漆60扇教室的门的外面(门的形状如图,单位:米)
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要花费5元,那么学校共要花费多少元?
师:你们肯定比我行,让学生独立计算。(师故意示弱造势)
师:谁可以把自己的想法告诉大家?学生说出解题思路。
四、课堂总结。
师:这节课你有什么收获?(生回答)
师:大家真了不起,经过积极思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。
篇11:《组合图形的面积》教学设计
一、教材分析:
这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的'思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。
二、学情分析:
根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。
三、教学目标
1、掌握组合图形面积计算的方法并正确计算。
2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,初步解决生活中组合图形的实际问题。
四、教学重点和难点
1、掌握组合图形面积的计算方法。
2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。
3、学会运用“分割”与“添补“的方法计算组合图形的面积。
五、教学过程
(一)谜语激趣,以旧引新
(课前)将一些教学用具的纸片发给学生
1、谈话导入,课件出示谜语。(①草地上来了一群羊。打一水果名称。②又来了一群狼。打一水果名称)
(1)思考:谜语的谜底是什么?(①草莓。②杨(羊)莓(没))
设计意图:抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。
(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些)
(3)学生回答后教师出示答案,从而导出新课,并板书课题。
设计意图:用猜谜语的形式让学生来明事理,从而导出新课。
2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)
(1)同桌交流、讨论。
(2)代表回答。
(3)复习近平面图形面积公式。
设计意图:巩固所学几种平面图形的面积公式及计算方法。
(二)自主探究新知
1、小组合作,交流探讨。
(1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。
(2)2人小组讨论并计算出图形的面积。(小动)
设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。
2、自主合作,探索方法。
课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。
(1)让学生拿出课前准备的图片中组合图形的学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)
(2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法)计算图形的面积。
(3)根据学生的解法,教师进行分析、点评。
设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。
(三)联系实际,巩固拓展
1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。
2、学生独立完成,代表发表自己的解题方法。
3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。
设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。
(四)回顾全课,小结
1、学生小结。
2、教师总结。
3、布置作业。
设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。
六、板书设计
篇12:组合图形的面积教学设计
一、教学目标
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
二、教材分析
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
三、学校及学生状况分析
我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
四、教学设计
(一)观察动画,复习旧知,引出新知
1、观察动画,分析引入
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形) [板书:基本图形]
师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]
2、复习基本图形面积公式
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )]
(二)动手拼图,初探方法
1、自拼图形,分析要素
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?
(学生活动,教师巡视,指导画高。)
2、展示图形,分析条件
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)
3、打开思路,探索面积
师:怎样求一个组合图形的面积?
生:分另计算三角形与长方形的面积,然后相加。
师:谁能说一说具体的计算过程?
(学生叙述,教师板书计算过程如下。)
师:下面,请每个小朋友试着求出自己所拼的组合图形的面积。
(学生分别计算自己所拼的图形组合的面积,并进行交流。)
师:刚才很多同学介绍了自己所拼组合图形的面积,那么,想一想这些图形的计算方法有什么共同的特点?
生:分别计算几个基本图形的面积,然后相加。
(三)拓展方法,发展思维
师:刚才同学们的回答特别精彩,想法也非常巧妙。现在,有个叫小华的同学他家里面要装修,计划在客厅铺地板(媒体出示课本第75页的客厅平面图)。
师:请你估计他家至少要买多大面积的地板。
(学生小组讨论、交流)
师:请哪个小组来介绍,小华家的客厅面积是怎样计算的?
(学生分别介绍不同的计算方法,见下图)
3、归纳提高
师:请同学们想一想,上述四种计算方法中,哪些是相同的,哪些是不同的?
生:前三个图形都是将组合图形进行分割,然后再进行计算。而第四个图形是补上去一块。
师:为什么要补上一块呢?
生:补一块就成基本图形了。
师:这种方法叫添补的方法,将原图形补充为基本图形,然后求出整个儿图形的面积,然后再减去补充的部分的面积。
(四)巩固训练,一题多解
师:这是学校教学楼占地的面积,你能用几种方法解决这个问题?(出示下图)
师:请先在练习纸上画出解题的思路,然后进行计算。
(学生画图分析,并计算。具体计算过程略)
(五)小结:这节课你有什么收获?
五、教学反思
在探索组合图形面积的过程中,我注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,在发展了学生空间观念的同时,找出隐含的条件,是学生能够利用已有的知识解决问题。
1、注重方法的指导与总结。授人以鱼,不如授人以渔。在本课的教学过程中,十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体验成功的愉悦,学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟出学习方法,学的主动积极、生动灵活。通过一题多解的训练,培养发散思维,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法。
2、运用现代化的教学手段,向学生提供直观、多彩,、生动的形象,使学生多种感官同时受到刺激,激发了学生学习的积极性,同时把教学过程组织得更生动,形象,能启发学生进行总结归纳,抽象概括,主动参与知识的形成过程。
3、问题来源于学生,回归于学生。学生在拼图的过程中,放手让他们拼图,测量各个要素,解决提出的问题。让学生在活动中,亲自体验自己的成功,在初步形成对组合图形概念的基础上,对“组合”的意义有了更深一层的理解,获得更多的成功的愉悦。
4、出现未预想到的“移补”的方法解题。在预先备课时,只考虑到“割”和“补”,没想到学生在解决第(四)部分的图形时,应用了“移补”的方法,如图所示
想法很奇特,是预料之外的。虽然是因为数据的偶然性,但这种方法用起来比较简便,予以鼓励。
新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。
篇13:组合图形的面积教学设计
本节课的教学目标是在自主学习活动中,理解计算组合图形面积的多种方法;能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答;能运用所学的知识,解决生活中组合图形的实际问题;进一步渗透转化的数学思想。重点是利用基本的平面图形面积来求组合图形的面积。难点是能合理分割、添补和割补组合图形,并能根据图形的特点合理寻找隐蔽的条件。正确地选择方法并解答。
基于以上分析和对本节课的理解,我是这样设计这节课的:
1、复习铺垫 激趣导入
组合图形的面积需要学生在已有的知识基础上进行计算,所以开始设计了复习已学过的一些平面图形面积的计算方法,为新授内容做好知识铺垫。接着展示了四个漂亮的组合图形,让学生说说分别是由哪几个简单图形组成的,这样学生就自然而然的认识了组合图形,然后给出明确定义,便于学生对组合图形有个正确的认识,便于学生寻找生活中物体表面的组合图形,体现数学生活化。
2、自主学习,合作交流
教学例题时,首先让学生估一估,培养了学生的估算意识。由于有了新课开始的复习铺垫和现在学生估算的过程,每个学生对如何求智慧老人客厅的面积已经有了一定的思考。其次让学生动手算一算,给学生足够的时间和空间去自主学习。然后小组交流,把自己的方法在小组内说一说,让每个学生都参与到数学活动中,进一步理解和掌握求组合图形面积的计算方法,培养学生小组合作能力、空间想象能力,从而提高学生解决问题的能力。当学生汇报出许多方法时,体现了解题方法的个性化。然后引导学生进行比较,进行方法的优化,从而选择最好的方法解决问题。
3、应用练习,提升认识
设计分层练习,一是为了让学生明白在计算组合图形面积时,要选择自己喜欢的、简单的方法进行计算。二是为了让学生学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念,使学生体会到数学就在我们身边。三是要灵活运用所学知识计算组合图形的面积,要学会根据条件合理选择计算方法。
本节课的成功之处:
1、遵循了学生自主学习的原则,通过学生独立思考、小组合作探究,寻找解决问题的办法,突出了转化思想,能够结合实际,让学生体验生活中的数学,加强了数学的乐趣。
2、学生经历了自主探究与汇报交流,总结出了求组合图形面积的方法,突出了本节课的重点和难点,知识落到了实处。真正作到了感悟与知识的生成相辅相成。
本节课不足之处:
1、内容安排比较多,时间不充足。
2、对组合图形面积的割补原则讲述不到位。
3、对于学生给出的一些求组合图形面积的计算方法,是否
正确列出算式,在课堂上指导不够。
4、对学困生关注不够。
改进措施:
1、充分研读教材、吃透教材,要根据学生的整体水平切实把
知识点、技能落到实位。
2、教学过程中,在指导学生学习方面,要全面关注全体学生,特别是学困生的学习与活动。
3、学生学习之间的互动还需进一步加强。
4、继续努力培养学生课堂发言的积极性与主动性。
篇14:组合图形面积的教学设计
教学内容:
人教版小学数学五年级上册第五单元《组合图形面积》。
教学目标:
1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。
教学重难点及关键:
1、重点:掌握组合图形面积的计算方法。
2、难点:理解计算组合图形面积的多种方法。
3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
教学过程:
一、复习回顾,揭示课题
1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?
2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
3、组合图形在我们生活中的应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书:组合图形的面积计算)
二、自主探索组合图形面积
1、出示计算客厅面积问题:
小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?
2、请学生们观察这个图形,然后自己先想一想该怎么计算?
3、小组合作交流,讨论解决组合图形面积计算问题。
学生可能出现“分割法”和“添补法”
“分割法”即将上述图形分割成几个基本图形。
4、讨论“分割法”
1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。
2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。
5、讨论“添补法”
1)为什么要补上一块?
2)补上一块后计算的方法是怎样的.?
(让学生都理解这一算法)
6、先归纳出两大类的方法“合并求和”、“去空求差”。
小结:谁来总结一下,组合图形的面积应该怎么计算?
计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。
看来同学们学得都很不错,现在老师还有几道题想考考大家。
三、实际应用
1、先来一题热身题,出示书本试一试。
2、一展身手,挑战开始。
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
可以采取学生独立解决与合作交流的形式
如果你不会做,可以和你的同桌讨论交流一下。
3、挑战本领
一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?
可以采取学生独立解决与合作交流的形式
4、求图形阴影部分的面积。
5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)
可以先四人小组讨论,然后在进行计算。
四、课堂总结
在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。
篇15:组合图形面积的教学设计
教学内容:
苏教版教材小学数学第十册P106例10“试一试”,练一练和练习十九的第6—10题。
教学目标:
⑴使学生认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。
⑵通过操作、探索、发现、交流等活动,初步培养学生合作意识和创新意识,进一步发展学生的空间观念和交流能力。
⑶通过学习,提高学生对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,感受数学的魅力。
教学流程:
一、说圆环。
⑴剪圆环活动。
出示一个同心圆环;
让学生用一张白纸剪出同样的一个圆环。
⑵说剪圆环的过程。
让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减小圆面积。
二、算圆环。
1、教学例10
出示例10及图。
师问:从题中你获得哪些信息?要计算它的面积,你有什么好的方法?在小组中说说你的想法。
学生汇报及交流方法。
学生自主尝试练习。
交流解答过程。
学生交流(学生作品放在视频投影仪上向全班介绍):圆环面积的计算方法,大圆面积—小圆面积;圆环面积的计算步骤,可先算大圆面积,再算小圆面积,最后用减法算圆环面积;全班介绍,教师板书解答的全过程。
2、教学“试一试”
出示题目和图形,理解题意。
学生独立计算。
交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。
3、教学“练一练”
思考:
(1)求涂色部分的面积,需要计算哪些基本图形的面积?
(2)计算这些基本图形的面积分别需要哪些条件?
(3)第一个图形,两个基本图形有什么练习?第二个图形呢?
(4)学生独立完成,并全班交流。 反馈时,注意加法求组合图形面积和减法求组合图形的不同。
三、巩固练习。
1、完成练习十九第6题。
先说说每个组合需要测量途中哪些线段的长度?再让学生独立完成。
完成后展示学生作业 ,并交流方法。
2、完成练习十九第7题。
学生根据图形作出直观的.判断,并说说直观判断的方法。
师追问:你是怎样想到的?
学生通过计算检验所作出的判读。
3、完成练习十九第8题。
(1)观察图,理解题意。
(2)指导分析。
4、完成练习十九第9题。
师问:你能估计出每种花卉分别所占图形面积的几分之几吗?指导用画出辅导线的方法,来估计每种花卉所占圆形面积的几分之几。
学生独立计算每种花卉的种植面积。
完成后交方法。
四、阅读“你知道吗?,并算一算。
五、课堂总结
师:通过今天的学习,你有什么收获?说说缓刑的面积可以怎样求?在计算组合图形的面积时需要注意什么?
六、作业
练习十九第6题、第8题。
篇16:组合图形面积的教学设计
设计说明
本节课的内容是在学生已经学习了长方形、正方形、平行四边形、三角形和梯形的面积计算方法的基础上进行教学的。在教学中以引导学生经历知识的探究过程,突出思维训练为主要目标。
1、以学生为课堂学习的主体,关注学生已有的学习基础和学习经验。在教学过程中,选择适合学生的学习素材,设计适合学生的教学活动,让学生自主地投入到学习中,教师只作为学生课堂学习的引导者、合作者。
2、重视对学生估算意识和能力的培养。在教学过程中,引导学生主动进行观察、猜测、验证、推理与交流等数学活动,让学生经历数学知识的探究过程,感受成功的快乐。
3、完成课堂活动卡,把学生的算法进行归纳总结,分类整理,让学生在感受算法多样性的.同时,形成归纳概括的能力。
课前准备
教师准备:PPT课件
学生准备:学具卡片
教学过程
⊙创设情境,复习引入
1、引导学生回忆常见平面图形的面积计算方法。
(课件出示长方形、正方形等图形,指名回答各自的面积计算公式)
2、引导学生观察组合图形的特点。
(课件出示由长方形、正方形、三角形等组合而成的图形)
师:同学们观察这些图形,它们分别是由哪些图形组成的呢?(学生观察后回答)
师讲解:这样的图形,我们称为组合图形。今天我们就一起来探究组合图形面积的计算方法。
设计意图:通过复习旧知,使学生兴致勃勃地投入到新知的学习中去,变好奇心为浓厚的学习兴趣。
⊙合作交流,探究新知
1、估计组合图形的面积。
(课件出示教材88页例题图)
师:请同学们观察一下,这是什么图形?(组合图形)
师:这是智慧老人家客厅的平面图。智慧老人准备给客厅铺上地板,你们知道应该买多少平方米的地板吗?
(1)学生估计至少要买多少平方米的地板。
(2)组内交流估计的方法。
预设
生1:把客厅看成长方形,6×7=42,客厅的面积不到42m。
生2:把客厅看成边长是6m的正方形,估计其面积是36m。
2、实现转化,明确求组合图形面积的解题思路和解题方法。
(1)质疑:怎样求这个组合图形的面积呢?
(引导学生根据刚才的估计策略把组合图形转化成已经学过的规则图形,再计算其面积)
(2)动手实践,探究转化的方法。
(引导学生利用自己手中的学具,把组合图形转化成已经学过的图形)
①小组合作探究,将探究的结果填在课堂活动卡上。
②各组组长汇报本组的转化方法和转化结果,教师进行汇总。
师:你们是怎样转化的?分别转化成了什么图形呢?
分割法:
添补法:
割补法:
(3)观察比较,优化解题方法。
师:在这些转化方法中,哪些方法比较简单、容易计算呢?
预设
生:在这些方法中,图一、图二、图三、图四比较简单,容易计算。
师:在进行图形转化时,我们的要求是简单、易算。