关于初中奥数试题(精选11篇)大全
推荐文章
小编给大家分享关于初中奥数试题(精选11篇)大全的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。 - 素材来源网络 编辑:李欢欢。
下面是小编为大家整理的初中奥数试题,本文共11篇,欢迎大家借鉴与参考,希望对大家有所帮助。
篇1: 初中奥数试题
初中奥数试题
填空题:
①计算:定义一种新运算 a☆b 满足:a☆b=b×10+a×2.那么☆130=_____________.
②从 年到 年的12 年中,物价涨幅为150%(即1999 年用100 元能购买的物品,2010 年要比原来多花150 元才能购买).若某个企业的一线员工这12 年来工资都没变,按购买力计算,相当于工资下降了 %.
③右图中大圆的半径是 20 厘米,7 个小圆的半径都是10 厘米.那么阴影图形的面积是平方厘米(π取3.14).
④某届“数学解题能力展示”读者评选活动初试共有1 名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的
___________.
⑤右图是一个除法竖式.这个除法竖式的被除数是___________.
⑥算式 1!×3-2!×4+3!×5-4!×6++!×2011-2010!×+2011!的计算结果是___________.
⑦春节临近,从2011 年1 月17 日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1 月31 日,厂里还剩下工人121 名,在这15 天期间,统计工厂工人的工作量是2011 个工作日(一人工作一天为1 个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1 月31 日,回家过年的工人共有___________人.
⑧有一个整数,它恰好是它的约数个数的2011 倍.这个整数的最小值是___________.
⑨一个新建 5 层楼房的一个单元每层有东西2 套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5 人在花园中聊天: 赵说:“我家是第3 个入住的,第1 个入住的就住我对门.” 钱说:“只有我一家住在最高层.”
孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.” 李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106 号,104 号空着,108 号也空着.”
他们说的话全是真话.设第1、2、3、4、5 家入住的房号的个位数依次为A、B、C、D、E,那么五位数ABCDE =___________.
⑩6 支足球队,每两队间至多比赛一场.如果每队恰好比赛了2 场,那么符合条件的.比赛安排共有___________ 种.
0~9 可以组成两个五位数A 和B,如果A+B 的和是一个末五位数字相同的六位数,那么A×B 的不同取值共有___________ 个.
甲、乙两人分别从A、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B.当甲、乙两人第一次迎面相遇在C 地时,丙还有100 米才到C;当丙走到C 时,甲又往前走了108 米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A、B 两地间的路程是___________米.
如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为___________平方厘米.
用 36 个3×2×1 的实心小长方体拼成一个6×6×6 的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到___________个小长方体.
篇2:初中奥数试题及答案
初中奥数试题及答案
一、填空题
1 .已知不等式 3x-a ≤ 0 的正整数解恰是 1 , 2 , 3 ,则 a 的取值范围是 。
2 .已知关于 x 的不等式组 无解,则 a 的取值范围是 。
3 .不等式组 的整数解为 。
4 .如果关于 x 的不等式( a-1 ) x
5 .已知关于 x 的不等式组 的解集为 ,那么 a 的.取值范围是 。
二、选择题
6 .不等式组 的最小整数解是( )
A . 0 B . 1 C . 2 D . -1
7 .若 -1
A . -a
8 .若方程组 的解满足条件 ,则 k 的取值范围是( )
A . B . C . D .
9 .如果关于 x 的不等式组 的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( )
A.49对 B.42对 C.36对 D.13对
10.关于x的不等式组 只有5个整数解,则a的取值范围是( )
A. B.
C. D.
三、解答题
12.
13.已知a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b-3c=1,设m =3a+b-7c,记x为m的最大值,y为m的最小值,求xy的值。
14.已知关于x、y的方程组 的解满足 ,化简 。
15.已知 ,求 的最大值和最小值。
16.某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:
甲 乙 A(单位:千克) 0.5 0.2 A(单位:千克) 0.3 0.4 假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集。
设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?
17.据电力部门统计,每天8点至21点是用电高峰期,简称“峰时”,21点至次日8点是用电低谷期,简称“谷时”。为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
时间 换表前 换表后 峰时(8点至21点) 谷时(21点~次日8点) 电价 0.52元/千瓦时 x元/千瓦时 y元/千瓦时 已知每千瓦时峰时价比谷时价高0.25元,小卫家对换表后最初使用的100千瓦时用电情况进行统计分析知:峰时用电量占80%,谷时用电量点20%,与换表前相比,电费共下降2元。
请你求出表格中的x和y的值;
小卫希望通过调整用电时间,使她家以后每使用100千瓦时的电费与换表前相比下降10元至15元(包括10元和15元)。假设小卫家今后“峰时”用电量占整个家庭用电量的z%,那么:在什么范围时,才能达到小卫的期望?
答案提示:
1,93 3,-2;-3 4,7 5,a≤-2
篇3: 初中奥数试题及答案
初中奥数试题及答案
一、选择题(本大题共6小题,每小题3分,共18分)
1. 下列运算正确的是
A. (a3)2=a5
B. a3+a2=a5
C. (a3-a) ÷a=a2
D. a3÷a3=1
2. 下列各组长度的三条线段能组成三角形的是
A. 1cm,2cm,3cm
B. 1cm,1cm,2cm
C. 1cm,2cm,2cm
D. 1cm,3cm,5cm
3. 期中考试后,小明的试卷夹里放了8K大小的试卷纸共12页,其中语文4页、数学2页、英语6页,他随机从试卷夹中抽出1页,是数学卷的概率是
A. B. C. D.
4. 下列图形是生活中常见的道路标识,其中不是轴对称图形的是
5. 缺题
6. A、B两地相距360km,甲车以100km/h的速度从A地驶往B地,乙车以80km/h的速度从B地驶往A 地,两车同时出发.设乙车行驶的`时间为x(h),两车之间的距离为y(km),则y与x之间的函数关系的图象是
二、填空题(每小题3分,共24分)
7. 由四舍五入得到近似数20.12万,这个近似数是精确到_______位,有_______个有效数字。
8. 计算:(- )-2-(- )0=_______。
9. 单项式- 的次数是_______;系数是_______。
10. 室内墙壁上挂了一平面镜,小明在平面镜内看到他背后墙上的电子钟的示数如下图所示,则这时的实际时间应是_______。
11. 用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子_______枚(用含n的代数式表示)。
12. 已知:2m=3,4n=8,则23m-2n+3的值是______ _。
13. 如图,(甲)是四边形纸片ABCD,其中∠B=130°,∠D=50°.若将其右下角向内折出△PCR,恰使 CP∥AB,RC∥AD,如图(乙)所示,则∠C=_______。
14. 如图,在下列条件①∠BAD=∠CAD,BD=DC;②∠ADB=∠ADC,BD=DC;③∠B=∠C,∠BAD=∠CAD;④BD=DC,AB=AC中.能得到△ABD △ACD的条件是_______。(填序号)
三、解答题(6+6+6+7+7+8+8+10=58分)
15. (6分)先化简(2x-1)2-(3x+1)(3x-1)+5x(x-1),再选取一个你喜欢的数代替x,并求原代数式的值。
16. (6分)如图,已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF。试说明:BE=CF。
17. (6分)下面是我区某养鸡场-的养鸡统计图:
20. (8分)如图,△ABC中,AB=AC,若点D在AB上,点E在AC上,请你加上一个条件,使结论BE=CD成立,同时补全图形,并证明此结论。
21. (8 分)如图①,在底面积为100cm2、高为20cm的长方体水槽内放入一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯 本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变,水槽中水面上升的高度h与注水时间t之间的函数关系如图②所示。
(1)写出函数图象中点A、点B的实际意义; (2)求烧杯的底面积; (3)若烧杯的高为9cm,求注水的速度及注满水槽所用的时间。 (1)从图中你能得到什么信息(至少写2条)。 (2)各年养鸡多少万只? (3)所得(2)的数据都是准确数吗? (4)这张图与条形统计图比较,有什么优点?
22. (本题10分 )在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中点,DG⊥AC交AB于点G。
(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与CF,过点F作FH⊥FC,交直线AB于点H。
①试说明:DG=DC;
②判断FH与FC的数量关系并加以证明。
(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(本小题直接 写出结论,不必证明)。
【试题答案】
一、1. D 2. C 3. C 4. B 5. B 6. C
二、7. 百;4
8. 8
9. 4;-
10. 21:05
11. (3n+1)
12. 27
13. 90
14. ②③④(说明:第14小题,填了①的,不得分;未填①的,②、③、④中每填一个得1分) 三、
15. 解:原式=4x2-4x+1-(9x2-1)+5x2-5x
=4x2-4x+1-9x2+1+5x2-5x
=-9x+2 4分
任取一个x的值,如取x=0时,原式=2 6分
16. 解:∵ AC∥DF
∴∠ACB=∠F
在△ABC与△DEF中
∴△ABC △DEF 4分
∴BC=EF
∴BC-EC=EF-EC 5分
即BE=CF 6分
19. 解:(1)因为P(小王获胜)= , P(小李获胜)= ,
所以游戏不公平。 3分
(2)如果两个指针所指区域内的数的和不大于6,则小王获胜;否则小李获胜;(答案不唯一) 5分
P(小王获胜)= , P(小李获胜)= 7分
20. 解:附加的条件可以是:①BD=CE,②AD=AE,③∠EBC=∠DCB,④∠ABE=∠ACD,⑤BE、CD分别为∠ABC,∠ACB的平分线中任选一个(并补全图形) 4分
利用△ABE △ACD或△BCD △CBE,得证BE=CD 8分
21. 解:(1)点A:烧杯中刚好注满水 1分
点B:水槽中水面恰与烧杯中水面齐平2分
(2)由图可知:烧杯 放满需要18s,水槽水面与烧杯水面齐平,需要90s
∴可知,烧杯底面积:水槽底面积=1:5 4分
∴烧杯的底面积为20cm2 5分
(3)注水速度为10cm3/s 7分
注满水槽所需时间为200s 8分
22. 解:(1)①∵AC=BC,∠ACB=90°
∴∠A=∠B=45°
又GD⊥AC
∴∠ADG=90°
在△ADG中
∠A+∠ADG+∠AGD=180°
∴∠AGD=45°
∴∠A=∠AGD
∴AD=DG
又D是A C中点
∴AD=DC
∴DG=DC 3分
②由① DG=DC
又∵DF=DE
∴DF-DG=DC-DE
即FG=CE 4分
由①∠AGD=45°
∴∠HGF=180°-45°=135° 又DE=DF,∠EDF=90° ∴∠DEF=45°
∴∠CEF=180°-45°=135° ∴∠HGF=∠FEC 5分
又HF⊥CF
∴∠HFC =90°
∴∠GFH+∠DFC=180°-90°=90° 又Rt△FDC中
∠DFC+∠ECF=90°
∴∠GFH=∠ECF 6分
在△F GH和△CEF中
∴△FGH △CEF(ASA) ∴FH=FC 7分
(2)图略(8分)
△FHG △CFE 9分
不变,FH=FC 10分
篇4:初中奥数试题15道
为大家整理的“小机灵”杯数学竞赛决赛试题的文章,供大家学习参考!
第一部分(每题6分,共30分)
1.从中删去两个加数后使余下的四个加数之和恰好等于1.那么,删去的两个加数分别是___________和________________。
2.用四则运算符号及括号,对10、10、4、2这四个数进行四则运算,使所得结果是24。那么,这个四则运算的算式是___________________。
3.把一个正方体切成27个相等的小正方体。这些小正方体的表面积之和比大正方体的表面积大432平方厘米。那么,大正方体的体积是_____________立方厘米。
4.若a,b,c,d是互不相等的正整数,a*b*c*d=157,则a+b+c+d=_____________。
5.从一只装有1升酒精的大桶中倒出1/3升酒精,往瓶中加入等量水搅匀,然后再倒出1/3混合液,再加入等量的水搅匀,最后再倒出1/3混合液,并加入等量的水。这时,瓶内液体中海油酒精多少升?
第二部分(每题8,共40)
6.某学校招收艺术特长生,根据学生入学考试成绩确定了录取分数线,并录取了2/5的考生,所有被录取者的平均成绩比录取分数线高15分,没有被录取的考生的平均分比录取分数低20分,若所有考生的平均分是90分,那么录取分数线是______分。
7.两个七进制证书454与5的商的七进制表示为_______。
8.某文艺团队为庆祝元旦排练体操。若让1000名队员排成若干排,总排熟大于16,且从第二排起每排比前一排多1人。该队形应排成______排才能满足要求,此时第一排应排_____名队员。
9.n只小球外观相同,其中有一只小球的`重量比其他小球轻(其他小球重量相等),若有一架没有砝码的天平秤作为工具,至少称量5次就可以把那个重量较轻的小球找出来,那么,n的最大值是______。
10.如图,在△ABC中,已知AB=AC,AE⊥BC,CD=CA,AD=DB,则角DAE=_____度。
第三部分(每题10分,共50分)
11. 将1-5排成一排组成一个五位数,使得每个数位上的数均不大于它相邻的两个数的平均数(万位与个位上的数除外)。满足要求的五位数分别是______。
12. 一只自行车轮胎,如果把它安装在前轮,则自行车骑行5000千米后报废;如果把它安装在后轮,则自行车骑行3000千米后报废。若骑行一定路程后再交换前、后轮胎,并且使前、后轮胎同时报废,那么,这辆自行车能骑行______千米。
13. 在一次元旦晚会上,9位学生共演唱n首三重唱歌曲,在演唱中任何两人都曾合作过一次,并且仅合作一次,那么n=______。
14.在平行四边形ABCD中,EF//AH、HG//AD。如果平行四边形AHPE的面积是5平方厘米。平行四边形PFCG的面积是16平方厘米。那么三角形PBD的面积是____________平方厘米。
15.平面上有50条直线,其中20条互相平行。这50条直线最多能将平面分成___________个部分。
篇5:初中奥数中环杯竞赛试题
初中奥数中环杯竞赛试题
【1】
1.四个球,编号为1,2,3,4,将他们分放到编号为1,2,3,4的四只箱子里,每箱一个,则至少有一箱恰使球号与箱号相同的放法有几种?
2. 用数码1,2,3,4.....9各恰好两次,构成不同的质数,使它们的和尽可能小,则该和最小是几?
【2】
一班,二班,三班各有二人作为数学竞赛优胜者, 6人站一排照相, 要求同班同学不站在一起, 有( ) 种不同的站法?
【3】
一版邮票有20行20列,共400张邮票,称由3张同一行或同一列相连的邮票组成的纸块为“三联”.小亮想剪出尽可能多的三联,他最多能得到几块三联?(五年级)
【4】
第一次在1,2两数之间写上3;第二次在1,3之间和3,2之间分别写上4,5;以后每一次都在已写上的'两个相邻数之间,再写上这两个相邻数之和。这样的过程共重复8次,那么所以数的和是多少?
【5】
一次测验共有5道试题,测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题。如果做对3道或3道以上试题的同学为考试合格。请问:这次考试的合格率最多达百分之几?最少达百分之几?
【6】
把156支铅笔分成n堆(n>等于2),要求每堆一样多且为偶数支。有( )种分法。
【7】
七个相同的羽毛球,放在四个不同的盒子里, 每个盒子里至少放一个, 不同的放法有
( ) 种.
【8】
由甲城开往乙城的汽车每隔1小时一班逢整点出发,由乙城开往甲城的汽车每隔1小时一班但逢半点(30分)出发。从一个城市到另一个城市需要6小时,假定汽车行驶在同一高速公路上,那么一辆开往乙城的汽车最多能遇到( )辆开往甲城的汽车。
【9】
一群公猴、母猴和小猴共38只,每天共摘桃子266个。已知每只公猴每天摘桃10个,每只母猴每天摘桃8个,每只小猴每天摘桃5个,并且公猴比母猴少4只,那么,这群猴子中小猴有多少只?这道题目除了设X做以外还有别的方法吗?
篇6:奥数试题
奥数试题
1、20个小朋友报数,单数一行,双数一行。单数第5个数是号,双数第10个数是()号。
2、天平板上有8个同样的乒乓球,左边4个,右边4个。如果拿掉1个球,板上还有()个球。
3、1+2+3+4+5+6+7+8+9+10=()
4、()-4=()-1
小朋友排队去公园,小华前面有4个人,后面有10个人。小华排在第()个,一共有()个小朋友去公园。
5、小动物开运动会,50米赛跑的'成绩表如下;请在跑得最快的动物下面打“√”,跑得最慢的打“×”。
动物名小兔()小鹿()小狗()小猪()
时间12秒8秒11秒15秒
6、张老师带了男女同学各10名去看电影,一共要买()张电影票。
7、把没有按规律写的数划去;
(1)1、3、5、6、7、9、11;(2)3、6、9、12、15、16、18;
(3)2、5、8、11、12、14、17;(4)1、5、6、9、13、17、21;
篇7:小升初奥数试题
有关小升初奥数试题
二年级
1.仔细观察,找出变化规律,想一想空格里应填什么图形?
△□○ □○△ ○△□
□○△ ○△□ △□○
○△□ △□○
2.把2、3、4、6、7、9分别填到下面六个圆圈中,使三个算式成立。
○+○=10,○-○=5 ,○+○=8
三年级
1.育才小学五年级举行数学竞赛,共10题,每做对一题得8分,错一题倒扣5分。张小灵最终得分为41分,她做对了多少题?
2.37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工)。他们要全部渡过河去,至少要使用这只小船渡河多少次?
四年级
1.共有四人进行跳远、百米、跳高、铅球四项比赛,规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每一单项比赛中四人得分互不相同,总分第一名共获17分,其中跳高得分低于其它项得分,总分第三名共获11分,其中跳高得分高于其它项得分,总分第二名的人铅球得多少分?
2.在一场NBA篮球赛中,姚明开场后不久连连得分,已知他投中10个球(没有罚球),共23分,问姚明投中多少个2分球,多少个3分球?
五年级
1.计算:
(1)(101)2+(1011)2
(2)(1111)2+(1010)2+(1001)2
(3)(1011)2-(111)2
(4)(1011)2×(101)2
2.一个数列有如下规则,当数n 是奇数时,下一个数是(n+1);当n是偶数时,下一个数是n÷2。如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个是多少?
六年级
1.用10米长的钢筋做原料,来截取3米、4米长的的两种钢筋各100根,问至少要用去原料多少根?
2.一条小河流过A、B、C三镇。A、B两镇之间有汽船来往,汽船在静水中的速度为11千米/小时。B、C两镇之间有木船摆渡,木船在静水中的速度为 3.5千米/小时。已知A、C两镇水路相距50千米,水速度为1.5千米/小时。某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船有顺流而下到C镇,共用8小时,那么A、B两镇的距离是多少千米?
二年级
1.仔细观察,找出变化规律,想一想空格里应填什么图形?
解答:是□○△。可以横着、竖着、斜着观察。
2.把2、3、4、6、7、9分别填到下面六个圆圈中,使三个算式成立。
○+○=10,○-○=5,○+○=8
解答::在2、3、4、6、7、9中相加等于8的只有2和6,先把2、6填在第三个算式中,剩下的就可填成3+7=10,9-4=5.
三年级
1.育才小学五年级举行数学竞赛,共10题,每做对一题得8分,错一题倒扣5分。张小灵最终得分为41分,她做对了多少题?
解答:假设全对得10×8=80(分);实际得41分,少得80-41=39分。因为每一题做对做错差13分:所以做错39÷13=3题,因此做对了10-3=7题。
2.37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工)。他们要全部渡过河去,至少要使用这只小船渡河多少次?
解答:如果由37÷5=7……2,得出7+1=8次,那么就错了。因为忽视了至少要有1个人将小船划回来这个特定的要求。实际情况是:前面的每一个来回至多只能渡4个人过河去,只有最后一次小船不用返回才能渡5个人过河。
因为除最后一次可以渡5个人外,前面若干个来回每个来回只能渡过4个人,每个来回是2次渡河,所以至少渡河[(37-5)÷4]×2+1=17(次)。
四年级
1.共有四人进行跳远、百米、跳高、铅球四项比赛,规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每一单项比赛中四人得分互不相同,总分第一名共获17分,其中跳高得分低于其它项得分,总分第三名共获11分,其中跳高得分高于其它项得分,总分第二名的人铅球得多少分?
解答:
如表:17=5+5+5+2,而且只有这种拆分方法,又因为第一名跳高得分低于其它项得分,所以第一名跳高得2分,其它3项得5分。
因为11=5+2+2+2=3+3+3+2并且第三名跳高得分高于其它项得分,所以第三名跳高得5分,其它三项得2分。
第二名和第四名共可得4??3+1??4=16分,第三名总分11分,第二名至少12分,每项各得3分。第四名至少得4分,每项各得1分。
所以第二名铅球得3分。
2.在一场NBA篮球赛中,姚明开场后不久连连得分,已知他投中10个球(没有罚球),共23分,问姚明投中多少个2分球,多少个3分球?
解答:假设投中的10个球全是2分球,得:2??10=20(分),比实际少:23-20=3(分)。
用1个3分球去换1个2分球差出:3-2=1(分),可以换3÷1=3(个)3分球,2分球有:10-3=7(个)。
五年级
1.计算:
(1)(101)2+(1011)2
(2)(1111)2+(1010)2+(1001)2
(3)(1011)2-(111)2
(4)(1011)2×(101)2
解答:
(1)(101)2+(1011)2=(10000)2
(2)(1111)2+(1010)2+(1001)2=(100010)2
(3)(1011)2-(111)2=(100)2
(4)(1011)2×(101)2=(110111)2
2.一个数列有如下规则,当数n是奇数时,下一个数是(n+1);当n是偶数时,下一个数是n÷2。如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个是多少?
解答:根据倒退规则最初那个数是奇数的只有43。
六年级
1.用10米长的钢筋做原料,来截取3米、4米长的的两种钢筋各100根,问至少要用去原料多少根?
解答:10米的钢筋有三种解法较省料:
(1)截成3米、3米、4米三段,无残料;
(2)截成3米、3米、3米三段,残料1米;
(3)截成4米、4米两段,残料2米;
由于截法(1)最理想,应该充分利用截法(1)。考虑用原料50根,可以截成3米长的100根,4米长的50根,还差50根4米长的钢筋。应用截法(3),截原料25根,可以得到50根4米长的钢筋。所以,至少需要原料75根,其中50根按截法(1)截取,25根按截法(3)截取。
2.一条小河流过A、B、C三镇。A、B两镇之间有汽船来往,汽船在静水中的速度为11千米/小时。B、C两镇之间有木船摆渡,木船在静水中的`速度为3.5千米/小时。已知A、C两镇水路相距50千米,水速度为1.5千米/小时。某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船有顺流而下到C镇,共用8小时,那么A、B两镇的距离是多少千米?
解答:汽船的顺水速度是11+1.5=12.5(千米/小时)。木船顺水速度是3.5+1.5=5(千米/小时)。某人在船上的行驶时间为8-1=7(小时)。假设他从A到C均乘汽船,所走路程为12.5×7=87.5(千米)。此假设较实际A到C的距离多87.5-50=37.5(千米)。汽船与木船的速度差为12.5-5=7.5(千米/小时)。乘木船的时间为37.5÷7.5=5(小时),乘木船走的路程,即B到C的距离为5×5=25(千米)。所以A到B的距离是50-25=25(千米)。
篇8:奥数试题解析
甲多开支100元,三年后负债600元.求每人每年收入多少?
S的末四位数字的和是多少?
一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.
求和
证明:质数p除以30所得的余数一定不是合数.
若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.
如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.
答案解析:
所以 x=5000(元).
所以S的末四位数字的和为1+9+9+5=24.
因为
时,a-b0,即ab.即当b0或b0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则
有
由②有2x+y=20, ③
由①有y=12-x.将之代入③得
2x+12-x=20.
所以x=8(千米),于是y=4(千米).
5.第n项为
所以设p=30q+r,030.因为p为质数,故r0,即0
由①式得(2p-1)(2q-1)=mpq,即
(4-m)pq+1=2(p+q).
可知m4.由①,m0,且为整数,所以m=1,2,3.下面分别研究p,q.
(1)若m=1时,有
解得p=1,q=1,与已知不符,舍去.
(2)若m=2时,有
因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.
(3)若m=3时,有
解之得
故 p+q=8.
8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.
9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加
另一方面,S△PCD=S△CND+S△CNP+S△DNP.
因此只需证明
S△AND=S△CNP+S△DNP.
由于M,N分别为AC,BD的'中点,所以
S△CNP=S△CPM-S△CMN
=S△APM-S△AMN
=S△ANP.
又S△DNP=S△BNP,所以
S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.
篇9:奥数试题及答案
奥数试题及答案
一个等差数列的第2项是2.8,第三项是3.1,这个等差数列的第15项是。
考点:等差数列.
分析:这个等差数列的公差是:3.1-2.8=0.3,所以首项是2.8-0.3=2.5,然后根据“末项=首项+公差×(项数-1)”列式为:2.5+(15-1)×0.3,然后解答即可.
解答:解:公差是:3.1-2.8=0.3,
首项是2.8-0.3=2.5,
2.5+(15-1)×0.3,
=2.5+4.2,
=6.7;
故答案为:6.7.
点评:本题关键是求出公差,知识点:末项=首项+公差×(项数-1).
篇10:小升初经典奥数试题
小升初经典奥数试题
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2.2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
8.甲、乙两队共同修一条长400米的.公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
15.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
篇11:奥数经典试题及答案
奥数经典试题及答案
两个数的'和是2016,其中一个加数的个位是0,如果把这个0去掉,就正好等于另一个加数的两倍.这两个加数各是多少?
答案与解析:这两个加数分别是:96和1920。因为把第一个加数个位上的“0”去掉,得到了第二个加数的2倍,所以,第一个加数是第二个加数的20倍.把第二个加数看作“1倍数”,第二个加数就是“20倍数”,这两个数的和2016就是“1+20”倍的数。根据这个“量”与“倍”的对应关系,可先求出第二个加数.这两个加数分别是:2010/(1+20)=96,2016-96=1920